• 제목/요약/키워드: cutting order

검색결과 1,183건 처리시간 0.024초

마이크로금형 구배각 제어를 위한 절삭가공조건 예측모델에 관한 연구 (A Study On Prediction Model of Cutting Conditions for Draft Angle Control)

  • 조지현;송병욱;서태일
    • 한국생산제조학회지
    • /
    • 제21권3호
    • /
    • pp.387-393
    • /
    • 2012
  • It is very difficult to determine suitable cutting conditions in order to obtain accurate cutting profiles because machining errors caused by tool deflection depend upon cutting conditions. In this study the relationship between real cutting profiles (inclined shapes and machining errors) and cutting conditions was modeled in order to fabricate draft angle on micro molds. CCD (Central Composite Design) of DOE (Design Of Experiment) and RSM (Response Surface Method) were applied in order to model the relationship between cutting conditions and machining errors. In order to use CCD the range of radial depth of cut was chosen by $10-90{\mu}m$ and the range of feedrate was chosen by 200-300mm/min, and 9 points of cutting conditions were chosen inside determined ranges. Then, actual cutting processes were carried out as respect to 9 points of cutting conditions, draft angles and real cutting profiles were measured on cutting profiles, each response surface function was determined by conducting response surface analysis and the functions were represented by 3-dimensional graphs, contour lines and $101{\times}101$ matrices. Consequently it is possible to determine suitable cutting conditions in order to obtain arbitrary given draft angles and cutting profiles by using modeling. To validate proposed approach in this study suitable cutting conditions were determined by modeling in order to obtain arbitrary given draft angle and cutting profile, and actual cutting processes were carried out. About 95% of good agreement between predicted and measured values was obtained.

진동절삭법을 이용한 절삭깊이의 최소화 (The Minimizing of Cutting Depth using Vibration Cutting)

  • 손성민;안중환
    • 한국정밀공학회지
    • /
    • 제21권11호
    • /
    • pp.38-45
    • /
    • 2004
  • This paper discusses the minimum cutting thickness with a continuous chip in sub-micrometer order precision diamond cutting. An ultra precision cutting model is proposed, in which the tool edge radius and the friction coefficient are the principal factors determining the minimum cutting thickness. The experimental results verify the proposed model and provide various supporting evidence. In order to reduce the minimum cutting thickness a vibration cutting method is applied, and the effects are investigated through a series of experiments under the same conditions as conventional cutting method.

전기분해를 이용한 난삭재의 다이아몬드 미세가공 (Diamond micro-cutting of the difficult -to -cut materials using Electrolysis)

  • 손성민;손민기;임한석;안중환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.951-954
    • /
    • 2000
  • This paper presents a new cutting method, i.e. diamond cutting, aided by electrolysis, in order to cut ferrous materials with diamond tools. Diamond cutting is widely applied in manufacturing ultraprecision parts such as magnetic disk, polygon mirror, spherical/non-spherical mirror and copier drum, etc. because of the diamond tool edge sharpness. In general, however, diamond cutting cannot be applied to cutting steels, because diamond tools wear excessively in cutting iron based materials like steel due to their high chemical interaction with iron in high temperature. In order to suppress the diffusion of carbon from the diamond tool and to reduce increase of cutting force due to size effect, we attempt to change chemically the compositions of iron based materials using electrolysis in a limited part which will be soon cut. Through experiments under several micro-machining and electrolysis conditions, cutting using electrolysis, compared to conventional cutting, was found to result in a great decrease of the cutting force, a better surface and much less wear tool.

  • PDF

마이크로흘 드릴링 머신의 개발 및 절삭성능 평가 (Development of Micro-hole Drilling Machine and Assessment of cutting Performance)

  • 김민건;유병호
    • 한국공작기계학회논문집
    • /
    • 제10권5호
    • /
    • pp.39-44
    • /
    • 2001
  • In this paper, drill fred mechanism, cutting depth measuring device and sensing buzzer of drill contact were investigated in order to develop the micro-hole drilling machine. Also, measuring device of cutting resistance was developed in order to estimate cutting resistance from change of cutting condition. The results show that extremely-low fled rate(less then $17{\mu}m/S$${\mu}{\textrm}{m}$ /s) can be done and cutting depth can be measured by up to 1${\mu}{\textrm}{m}$ with developed drilling machine. Accordingly we could assemble a very cheap micro-hole drilling machine($\phi$ 0.05~0.5 mm). Also we got the some properties of cutting performance i.e. under the same condition, cutting torque decreases as increase of spindle speed and rapid fled of drill brings about the inferior cutting state under low spindle speed.

  • PDF

切削加工 의 光彈性的 現象 에 관한 硏究( I ) (A Study on Photoelastic Fringe Patterns in Cutting Proces(I))

  • 김정두;이용성
    • 대한기계학회논문집
    • /
    • 제7권2호
    • /
    • pp.161-167
    • /
    • 1983
  • In this study the phenomenon of cutting stress which arises on cutting tools and work pieces in cutting process is investigated by rake angle of cutting tools and feed for this measurement, P$_{s}$-1 (high modulus, photolastic Inc.) was used as a cutting tool, P$_{s}$-3 (medium modulus, photolastic Inc.) was used as work piece and reduction apparatus was attached to the head stock, and orthogonal cutting was adapted as a cutting method and transparent glass was used to block the strain in the orientation of thickness. The followings are the results of this study. (1) Photoelastic experimental equipments have made it possible to make dynamic measurement and analyze stress distribution in cutting tool and work piece surface which has hitherto been conducted only in static measurement and analyzing method. (2) The maximum stress arising at tools and work pieces in cutting process is on the tool edge tip, and the maximum stress arising on the tip of cutting tools is equal to that on the contacting area of work pieces in values. (3) The distributions of maximum shear stress on certain parts of the cutting tools and work pieces are as follows; for cutting tools, .alpha.=12.deg., .alpha.=0.deg., .alpha.=-12.deg. in order, and for work pieces, .alpha.=-12.deg., .alpha.=0.deg., .alpha.=12.deg. in opposite order.der.

절삭력에 의한 공구와 공작물의 상대적 변형량 예측 [1] (Prediction of Relative Deformation between Cutting Tool and Workpiece by Cutting Force [$1^{st}$ paper])

  • 황영국;이춘만
    • 한국정밀공학회지
    • /
    • 제27권9호
    • /
    • pp.86-93
    • /
    • 2010
  • Any relative deformation between the cutting tool and the workpiece at the machining point, results directly in form and dimensional errors. The source of relative deformations between the cutting tool and the workpiece at the contact point may be due to thermal, weight, and cutting forces. Thermal and weight deformations can be measured at various positions of the machine tool and stored in the compensation registers of the CNC unit and compensated the errors during machining. However, the cutting force induced errors are difficult to compensate because estimation of cutting forces are difficult. To minimize the error induced by cutting forces, it is important to improve the machining accuracy. This paper presents the pre-calculated method of form error induced by cutting forces. In order to estimate cutting forces, Isakov method is used and the method is verified by comparing with the experimental results. In order to this, a cylindrical-outer-diameter turning experiments are carried out according to cutting conditions.

신경회로망을 이용한 밀링 공정의 진동 예측 (Vibration Prediction in Milling Process by Using Neural Network)

  • 이신영
    • 한국공작기계학회논문집
    • /
    • 제12권5호
    • /
    • pp.1-7
    • /
    • 2003
  • In order to predict vibrations occurred during end-milling processes, the cutting dynamics was modelled by using neural network and combined with structural dynamics by considering dynamic cutting state. Specific cutting force constants of the cutting dynamics model were obtained by averaging cutting forces. Tool diameter, cutting speed, fled, axial and radial depth of cut were considered as machining factors in neural network model of cutting dynamics. Cutting farces by test and by neural network simulation were compared and the vibration displacement during end-milling was simulated.

신경회로망을 이용한 밀링 공정의 진동 예측 (Vibration Prediction in Mill Process by Using Neural Network)

  • 이신영
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.272-277
    • /
    • 2003
  • In order to predict vibration during end-milling process, the cutting dynamics was modelled by using neural network and combined with structural dynamics by considering dynamic cutting states. Specific cutting constants of the cutting dynamics model were obtained by averaging cutting forces and tool diameter, cutting speed, feed, axial depth radial depth were considered as machining factors. Cutting farces by test and by neural network simulation were compared and the vibration during end-milling was simulated.

  • PDF

엔드밀 가공시 절삭조건이 비절삭력계수에 미치는 영향 (Effects of Cutting Conditions on Specific Cutting Force Coefficients in End Milling)

  • 이신영
    • 한국공작기계학회논문집
    • /
    • 제13권6호
    • /
    • pp.1-9
    • /
    • 2004
  • For improvement of productivity and cutting tool lift, cutting force in end milling needs to be predicted accurately. In order to analyze cutting force, the cutting dynamics was modelled mathematically by using chip load, cutting geometry, and the relationship between cutting forces and the chip load. Specific cutting force coefficients of the cutting dynamics model were obtained by average cutting forces, tool diameter, cutting speed, fled, axial depth and radial depth of cut. The effects of the cutting conditions on the specific cutting force constants in milling were studied. The model is verified through comparisons of model predicted cutting forces with measured cutting forces obtained from machining experiments.

밀링가공시 절삭조건이 비절삭력계수에 미치는 영향 분석 (Effects of Cutting Conditions on Specific Cutting Force Coefficients in Milling)

  • 이신영
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.93-98
    • /
    • 2004
  • A reasonable analysis of cutting force in end milling may give much advantage to improvement of productivity and cutting tool life. In order to analyze cutting force, the cutting dynamics was modelled mathematically by using chip load, cutting geometry, and the relationship between cutting forces and the chip load. Specific cutting constants of the cutting dynamics model were obtained by average cutting forces, tool diameter, cutting speed, feed, axial depth, and radial depth of cut. The effects of the cutting conditions on the specific cutting force constants in milling were studied. The model is verified through comparisons of model predicted cutting forces with measured culling forces obtained from machining experiments

  • PDF