• Title/Summary/Keyword: cutting mechanism

Search Result 356, Processing Time 0.034 seconds

An Experimental Investigation of Particle Impingement Erosion in Hydraulic System (유압시스템의 입자 침해 침식의 실험적 고찰)

  • 이재천
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.15-21
    • /
    • 2001
  • This study assesses the wear process of particle impingement erosion which is a major source of erosion among fluid power components. First, Bitter's theory was modified to simplify engineering calculations. Second, actual experiments were conducted to validate the modified equation. And the effect of concentration and size distribution of impinging particles was tested. Little deviation from the prediction of the modified equation was observed. To develop an analytical approach to the erosion mechanism, further experimental data are required to establish a correlation with other engineering parameters.

  • PDF

The Identification of drilling chatter on the machining accuracy (Drill가공의 형상정도에 의한 Chatter발생 규명)

  • Park, Jong-Kweon;Seong, Hwal-Gyeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.5
    • /
    • pp.18-24
    • /
    • 1995
  • Drilling chatter is regenerative type self-excited vibration and can be predicted by the measurments of the dynamic compliance between tool and workpiece based on structural dynamics and cutting dynamics. This paper describes the theoretical prediction about drilling chatter and the mechanism of the formation of multi-coner shape in holes by drilling chatter. By the experiments and theoretical study, it is found that the odd number of multi-coner shape is always generated by drilling chatter.

  • PDF

A Study on the Microcutting for Configuration of Tools using Molecular Dynamics (분자동역학을 이용한 공구형상에 따른 미소절삭현상에 관한 연구)

  • Moon, Chan-Hong;Kim, Jeong-Du
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.4
    • /
    • pp.135-142
    • /
    • 1995
  • Recently, the analysis of microcutting with submicrometer depth of cut is tried to get a more high quality surface product, but to get a valuable result another method instead of conventional finite element method must be considered because finite element method is impossible for a very small focused region and mesh size. As the alternative method, Molecular Dynamics or Statics is suggested and accepted in the field of microcutting, indentation and crack propagation. In this paper using Molecular Dynamics simulation, the phenomena of microcutting with subnanometer chip thickness is studied and the cutting mechanism for tool edge configuration is evaluated. As the result of simulation the atomistic chip formation is achieved.

  • PDF

Tool-Setup Monitoring of High Speed Precision Machining Tool

  • Park, Kyoung-Taik;Shin, Young-Jae;Kang, Byung-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.956-959
    • /
    • 2004
  • Recently the monitoring system of tool setting in high speed precision machining center is required for manufacturing products that have highly complex and small shape, high precision and high function. It is very important to reduce time to setup tool in order to improve the machining precision and the productivity and to protect the breakage of cutting tool as the shape of product is smaller and more complex. Generally, the combination of errors that geometrical clamping error of fixing tool at the spindle of machining tool and the asynchronized error of driving mechanism causes that the run-out of tool reaches to 3$^{\sim}$20 times of the thickness of cutting chip. And also the run-out is occurred by the misalignment between axis of tool shank and axis of spindle and spindle bearing in high speed rotation. Generally, high speed machining is considered when the rotating speed is more than 8,000 rpm. At that time, the life time of tool is reduced to about 50% and the roughness of machining surface is worse as the run-out is increased to 10 micron. The life time of tool could be increased by making monitoring of tool-setup easy, quick and precise in high speed machining tool. This means the consumption of tool is much more reduced. And also it reduces the manufacturing cost and increases the productivity by reducing the tool-setup time of operator. In this study, in order to establish the concept of tool-setup monitoring the measuring method of the geometrical error of tool system is studied when the spindle is stopped. And also the measuring method of run-out, dynamic error of tool system, is studied when the spindle is rotated in 8,000${\sim}$60,000 rpm. The dynamic phenomena of tool-setup are analyzed by implementing the monitoring system of rotating tool system and the non-contact measuring system of micro displacement in high speed.

  • PDF

A study on the havesting process and operating behaviour of working ships for farming laver (김 양식장 채취선의 운항거동과 수확조업에 관한 연구)

  • KIM, Ok-sam;MIN, Eun-bi;HWANG, Doo-jin
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.56 no.3
    • /
    • pp.223-229
    • /
    • 2020
  • We analyzed the cutting mechanism of laver harvesting machine in the sea area near Gooam Port in Goheung, Jeollanam-do, and investigated the change and efficiency of laver collecting operation in the working ship. The laver working ship slides uniformly from the bow to the upper part of the laver collecting machine on the deck and cuts the wet laver attached to the bottom of the net at the blade of the havesting machine. The laver farming net, which was loaded with laver turrets on the deck by gravity and collected primitives, consisted of a ship structure that led to the stern side and into the sea. The working ship operation is in harvesting process while driving in a S-shape that is separated by one space to efficiently collect the laver net. During laver working ship operation, the speed was 0.51 m/s in the access stage, 0.56 m/s in the havesting stage, and 0.52 m/s in the exit stage. Considering the cutting edge life and production efficiency of the laver harvesting machine, it is appropriate to harvest 1.15 to 1.26 kg/rpm by operating at a rotational speed of about 700 to 800 rpm rather than forcibly harvesting the product at high speed. On the deck of the working ship, 959.7 kg of starboard and 1048.7 kg of center were 964.7 kg of port side. Based on the starboard, 9.3% of the central part and 0.5% of the port side appeared. The reason for this was due to the difference in harvest time according to the turning direction of the working ship.

Tool-Setup Measurement Technology of High Speed Precision Machining Tool (고속 정밀 가공기의 공구셋업 측정기술)

  • 박경택;신영재;강병수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1066-1069
    • /
    • 2004
  • Recently the monitoring system of tool setup in high speed precision machining tool is required for manufacturing products that have highly complex and small shape, high precision and high function. It is very important to reduce time to setup tool in order to improve the machining precision and productivity and to protect the breakage of cutting tool as the shape of product is smaller and more complex. Generally, the combination of errors that geometrical clamping error of fixing tool at the spindle of machining center and the asynchronized error of driving mechanism causes that the run-out of tool reaches to 3∼20 times of the thickness of cutting chip. And also the run-out is occurred by the misalignment between axis of tool shank and axis of spindle and spindle bearing in high speed rotation. Generally, high speed machining is considered when the rotating speed is more than 8,000 rpm. At that time, the life time of tool is reduced to about 50% and the roughness of machining surface is worse as the run-out is increased to 10 micron. The life time of tool could be increased by making monitoring of tool-setting easy, quick and precise in high speed machining center. This means the consumption of tool is much more reduced. And also it reduces the manufacturing cost and increases the productivity by reducing the tool-setup time of operator. In this study, in order to establish the concept of tool-setting monitoring the measuring method of the geometrical error of tool system is studied when the spindle is stopped. And also the measuring method of run-out, dynamic error of tool system, is studied when the spindle is rotated in 8,000 ∼ 60,000 rpm. The dynamic phenomena of tool-setup is analyzed by implementing the monitoring system of rotating tool system and the noncontact measuring system of micro displacement in high speed.

  • PDF

Coordinated supporting method of gob-side entry retaining in coal mines and a case study with hard roof

  • Liu, X.S.;Ning, J.G.;Tan, Y.L.;Xu, Q.;Fan, D.Y.
    • Geomechanics and Engineering
    • /
    • v.15 no.6
    • /
    • pp.1173-1182
    • /
    • 2018
  • The coal wall, gob-side backfill, and gangues in goaf, constitute the support system for Gob-side entry retaining (GER) in coal mines. Reasonably allocating and utilizing their bearing capacities are key scientific and technical issues for the safety and economic benefits of the GER technology. At first, a mechanical model of GER was established and a governing equation for coordinated bearing of the coal-backfill-gangue support system was derived to reveal the coordinated bearing mechanism. Then, considering the bearing characteristics of the coal wall, gob-side backfill and gangues in goaf, their quantitative design methods were proposed, respectively. Next, taking the No. 2201 haulage roadway serving the No. 7 coal seam in Jiangjiawan Mine, China, as an example, the design calculations showed that the strains of both the coal wall and gob-side backfill were larger than their allowable strains and the rotational angle of the lateral main roof was larger than its allowable rotational angle. Finally, flexible-rigid composite supporting technology and roof cutting technology were designed and used. In situ investigations showed that the deformation and failure of surrounding rocks were well controlled and both the coal wall and gob-side backfill remained stable. Taking the coal wall, gob-side backfill and gangues in goaf as a whole system, this research takes full consideration of their bearing properties and provides a quantitative basis for design of the support system.

A study on the usage satisfaction of multi-type handpieces with equipped air-jet function (Air-jet기능을 장착한 멀티형 복합유닛 핸드피스의 사용 만족도 조사)

  • Kim, Im-Sun;Choi, Byung-Hwan
    • Journal of Technologic Dentistry
    • /
    • v.37 no.3
    • /
    • pp.169-178
    • /
    • 2015
  • Purpose: This study was to investigate usage satisfaction of multi type handpiece with equipped air-jet function Methods: The subjects of this study through the survey was conducted for fifty-nine dental technicians in Daegu and Gyeongsangbukdo from the May 7 to 19, after the June 23 to July 4 2014. The survey was about the function and quality through user testing environment by cutting zirconia specimens using appliance for zirconia. The collected date was analyzed by the statistical program SPSS Win Ver 19.0 for the satisfaction of handpiece and control system. To test for significance on each item, p<0.05 had been decided a standard. General characteristics and relationship between the handpiece and control system was performed correlation analysis. Results: The results of this study is as follows. 35 dental technicians had 1~2 years career in zirconia part as the highest 59.3%, 95% of subjects expected that the prospects for the zirconia material have bright prospects. The satisfaction of multi type handpiece and control system design and function showed a significant difference. Subjects satisfied with the design and function of the multi type showed negative correlation with those of Standard. The satisfaction of multi type handpiece showed 3.37 points of air jet, 3.05 points of noise level, 2.69 points of water flow rate, and 1.98 points of cruise function. Sample differences in all parameters showed a statistically higher difference. Conclusion: High-speed cutting mechanism of multi-type is recommended working with zirconia materials and the multi-type unit combined handpiece motor, air-turbine and air-gun will be expected the increase of user due to the high satisfaction of air jet.

Machining Characteristics of SiC reinforced Composite by multiple diamond-coated drills (다이아몬드 피복공구에 의한 SiC 강화 복합재료의 절삭특성)

  • M. Chen;Lee, Y. M.;S. H. Yang;S. I. Jang
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.533-537
    • /
    • 2003
  • Compared to sintered polycrystalline diamond (PCD), the deposited thin film diamond has a great advantage on the fabrication of cutting tools with complex geometries such as drills. Because of high performance in high speed machining non-ferrous difficult-to-cut materials in the field of automobiles industry, aeronautics and astronautics industry, diamond-coated drills find large potentialities in commercial applications. However, the poor adhesion of the diamond film on the substrate and high surface roughness of the drill flute adversely affect the tool lift and machining quality and they become the main technical barriers for the successful development and commercialization of diamond-coated drills. In this paper, diamond thin films were deposited on the commercial WC-Co based drills by the electron aided hot filament chemical vapor deposition (EACVD). A new multiple coating technology based on changing gas pressure in different process stages was developed. The large triangular faceted diamond grains may have great contribution to the adhesive strength between the film and the substrate, and the overlapping ball like blocks consisted of nanometer sized diamond crystals may contribute much to the very low roughness of diamond film. Adhesive strength and quality of diamond film were evaluated by scanning electron microscope (SEM), atomic force microscope (AFM), Raman spectrum and drilling experiments. The ring-block tribological experiments were also conducted and the results revealed that the friction coefficient increased with the surface roughness of the diamond film. From a practical viewpoint, the cutting performances of diamond-coated drills were studied by drilling the SiC particles reinforced aluminum-matrix composite. The good adhesive strength and low surface roughness of flute were proved to be beneficial to the good chip evacuation and the decrease of thrust and consequently led to a prolonged tool lift and an improved machining quality. The wear mechanism of diamond-coated drills is the abrasive mechanical attrition.

  • PDF

Structure and action mechanism of humic substances for plant stimulations

  • Jeon, Jong-Rok;Yoon, Ho Young;Shin, Gyeong-Im;Jeong, Song Yi;Cha, Joon-Yung;Kim, Woe-Yeon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.38 no.3
    • /
    • pp.175-179
    • /
    • 2018
  • Humic substances that can be obtained from coal resources such as leonardite in a bulk scale have been employed as crop stimulators and soil conditioners. The polymeric organics containing a variety of aromatic and aliphatic structures are known to activate plants in a multifunctional way, thus resulting in enhanced germination rate and abiotic stress resistance concomitant with induction of numerous genes and proteins. Although detailed structural-functional relationship of humic substances for plant stimulations has not been deciphered yet, cutting-edge analytical tools have unraveled critical features of humic architectures that could be linked to the action mechanisms of their plant stimulations. In this review article, we introduce key findings of humic structures and related biological functions that boost plant growth and abiotic stress resistance. Oxygen-based functional groups and plant hormone-like structures combined with labile and recalcitrant carbon backbones are believed to be critical moieties to induce plant stimulations. Some proteins such as HIGH-AFFINITY $K^+$ TRANSPORTER 1, phospholipase A2 and $H^+$-ATPase have been also recognized as key players that could be critically involved in humic substance-driven changes in plant physiology.