• Title/Summary/Keyword: cutting force components

Search Result 93, Processing Time 0.023 seconds

Detection of Tool Wear using Cutting Force Measurement in Turning (선삭가공에서 절삭력을 이용한 공구마멸의 감지)

  • 윤재웅;이권용;이수철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.68-75
    • /
    • 2000
  • The development of flexible automation in the manufacturing industry is concerned with production activities performed by unmanned machining system. A major topic relevant to metal-cutting operations is monitoring tool wear, which affects process efficiency and product quality, and implementing automatic tool replacements. In this paper, the measurement of the cutting force components has been found to provide a method for an in-process detection of tool wear. Cutting force components are divided into static and dynamic components in this paper, and the static components of cutting force have been used to detect flank wear. To eliminate the influence of variations in cutting conditions, tools, and workpiece materials, the force modeling is performed for various cutting conditions. The normalized force disparities are defined in this paper, and the relationships between normalized disparity and flank wear are established. Finally, Artificial neural network is used to learn these relationships and detect tool wear. According to the proposed method, the static force components could provide the effective means to detect flank wear for varying cutting conditions in turning operation.

  • PDF

Prediction of Cutting Force in Up end Milling (엔드밀의 상향절삭시 절삭력 예측)

  • 이영문
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.3-7
    • /
    • 2000
  • In this study, a modified model for prediction of cutting force components in up end milling process is presented. Using this cutting force components of 4-tooth endmils with various helix angles have been predicted. Predicted value of cutting force components are well coincide with the measured ones. As helix angle increases overlapping effects of the active cutting edges increase and as a result the amplitudes of cutting force components decrease and the specific cutting energy consumed also decreases

  • PDF

Prediction of Cutting Force in Down End Milling (엔드밀의 하향절삭시 절삭력 예측)

  • 이영문;이선호;태원익
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.907-911
    • /
    • 2000
  • In this study, a modified model for prediction of cutting force components in down end milling process is presented. Using this cutting force components of 4-tooth endmills with various helix angles have been predicted. Predicted values of cutting force components are well coincide with the measured ones. As helix angle increases overlapping effects of the active cutting edges increase and as a result the amplitudes of cutting force components decrease.

  • PDF

Detection of Tool Wear using Cutting Force Measurement in Turning (선사가공에 절삭력을 이용한 공구마멸의 감지)

  • 윤재웅;이권용;이수철;최종근
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.1
    • /
    • pp.1-9
    • /
    • 2001
  • The development of flexible automation in the manufacturing industry is concerned with production activities performed by unmanned machining system A major topic relevant to metal-cutting operations is monitoring toll wear, which affects process efficiency and product quality, and implementing automatic toll replacements. In this paper, the measurement of the cutting force components has been found to provide a method for an in-process detection of tool wear. The static com-ponents of cutting force have been used to detect flank wear. To eliminate the influence of variations in cutting conditions, tools, and workpiece materials, the force modeling is performed for various cutting conditions. The normalized force dis-parities are defined in this paper, and the relationships between normalized disparity and flank were are established. Final-ly, artificial neural network is used to learn these relationships and detect tool wear. According to proposed method, the static force components could provide the effective means to detect flank wear for varying cutting conditions in turning operation.

  • PDF

A Study on the Dynamic Component of Cutting Force in Turning[1] -Recognition of Chip Flow by the Dynamic Cutting Force Component- (선삭가공에 있어서 절삭저항의 동적성분에 관한 연구 [I] -동적성분에 의한 Chip배출상태의 인식-)

  • Chung, Eui-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.5 no.1
    • /
    • pp.84-93
    • /
    • 1988
  • The on-line detection of the chip flow is one of the most important technologies in com- pletly automatic operation of machine tool, such as FMS and Unmanned Factories. This problem has been studied by many researchers, however, it is not solved as yet. For the recognition of chip flow in this study, the dynamic cutting force components due to the chip breaking were measured by dynamometer of piezo-electric type, and the frequency components of cutting force were also analyzed. From the measured results, the effect of cutting conditions and tool geometry on the dynamic cutting force component and chip formation were investigated in addition to the relationships between frequency of chip breaking (fB) and side serrated crack (fC) of chip. As a result, the following conclusions were obtaianed. 1) The chip formations have a large effect on the dynamic cutting force components. When chip breaking takes place, the dynamic cutting force component greatly increases, and the peridoic components appear, which correspond to maximum peak- frequency. 2) The crater wear of tool has a good effect on the chip control causing the chiup to be formed as upward-curl shape. In this case, the dymamic cutting force component greatly increases also 3) fB and fC of chip are closely corelated, and fC of chips has a large effect on the change of the situation of chip flow and dynamic cutting force component. 4) Under wide cutting conditions, the limit value (1.0 kgf) of dynamic cutting force component exists between the broken and continuous chips. Accordingly, this value is suitable for recognition of chip flow in on-line control of the cutting process.

  • PDF

A Study on the Detection of Tool Wear by Use of Cutting Force Component in Orthogonal Cutting (선삭가공에서 절삭분력을 이용한 공구의 마멸검출에 관한 연구)

  • Kim, Ki-Choong;Hyun, Chung-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.3 no.4
    • /
    • pp.30-42
    • /
    • 1986
  • On the analysis of cutting mechanics in orthogonal cutting, each cutting force component can be predicted. By adding the flank face wear term to the prediction equation for cutting force components, complete equations are obtained. Using these equations, it is shown that cutting force components are increased linearly as flank face wear land is developed, in theory and experiment. By making non-dimensional term ie. Fv/Fc, the width of variation of output signal Fv/Fc is greately decreased compared with each cutting force component as cutting condition is varied. Among these conditions, the variation of chip width in the range of more than 1mm and that of cutting velocity have little effect on the output signal Fv/Fc, that of Flank face werr land can be detected without difficulty.

  • PDF

Generalized Method for Constructing Cutting Force Coefficients Database in End-milling (엔드밀링 가공에서 절삭력 계수 데이터베이스 구현을 위한 일반화된 방법론)

  • 안성호;고정훈;조동우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.8
    • /
    • pp.39-46
    • /
    • 2003
  • Productivity and machining performance can be improved by cutting analysis including cutting force prediction, surface error prediction and machining stability evaluation. In order to perform cutting analysis, cutting force coefficients database have to be constructed. Since cutting force coefficients are dependent on cutting condition in the existing research, a large number of calibration tests are needed to obtain cutting force coefficients, which makes it difficult to build the cutting force coefficients database. This paper proposes a generalized method for constructing the cutting force coefficients database us ins cutting-condition-independent coefficients. The tool geometry and workpiece material were considered as important components for database construction. Cutting force coefficients were calculated and analyzed for various helix and rake angles as well as for several workpiece. Furthermore, the variation of cutting force coefficients according to tool wear was analyzed. Tool wear was found to affect tool geometry, which results in the change of cutting force coefficients.

Cutting Characteristics Variation of Inconel 718 in End Millig with different Helix Angles -(II) Down End Milling (인코넬 718의 엔드밀링시 헬릭스각에 따른 절삭특성 변화 - (II) 하향엔드밀링)

  • 태원익;이선호;최원식;양승한;이영문
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.814-817
    • /
    • 2000
  • This paper has two purposes. One is to investigate the effect of the helix angle of endmilling cutter on the cutting haracteristics of inconel 718 in down endmilling. To this end a newly developed cutting force model in down end milling process is presented. Using this cutting force components of 4-tooth endmills with various helix angles have been predicted. Predicted values of cutting force components are well coincide with the measured ones. The other is to compare the down endmilling characteristics of lnconel 718 with those of the up milling previously presented. In up endmilling as the helix angle becomes larger the radial and tangential components of the specific cutting force ($K_1 and K_r$) decrease. While in down milling $K_1 and K_r$ become smaller as the helix angle decrease.

  • PDF

Flank Wear Estimation Using Dynamic Cutting Force(l) (절삭력의 동적 성분을 이용한 플랭크마모의 평가(I))

  • Kwon, Y.K.;Oh, S.H.;Seo, N.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.8
    • /
    • pp.115-121
    • /
    • 1997
  • The in-process detection of the tool wear is one of the most important technologies in completely auto- matic operation of machine tool. In this research, using the tools having flank wear, the dynamic compo- nent of cutting forces is considered to be available for identifying the cutting process. In order to investi- gate this relation in detail, the cutting forces in turning of workpiece made of aluminum were measured by dynamometer of piezoelectric type, and the dynamic components of cutting force were analyzed. The fre- quency analysis, probability density analysis and RMS analysis of the dynamic components were carried out independently. Through the experiments, the characteristics of the tool system have a large effect on the dynamic component of cutting forces. As a result, it is shown that the dynamic cutting force was able to detect flank wear accurately.

  • PDF

Analysis of cutting characteristics in micro machining using cutting force coefficient (절삭력 계수를 통한 마이크로 가공의 절삭 특성 분석)

  • Lee H.U.;Cho D.W.;Park J.K.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.483-488
    • /
    • 2005
  • The complex three-dimensional miniature components are needed for a wide range of applications from the aerospace to the biomedical industries. To manufacture these products, micro machining that can make a high aspect ratio part and has good accuracy is widely researched. In this paper, cutting characteristics were analyzed in micro machining using cutting force coefficients, which are the specific cutting force for normal and frictional direction of rake surface. From measured cutting force in micro end milling, cutting condition independent cutting force coefficients were determined and used for analysing the characteristics of micro cutting. Using the cutting force coefficient, 써써써.

  • PDF