• Title/Summary/Keyword: cutting fluids

Search Result 73, Processing Time 0.026 seconds

A NUMERICAL STUDY ON THE COATING THICKNESS IN CONTINUOUS HOT-DIP GALVANIZING (연속 아연 도금 두께에 관한 수치 해석적 연구)

  • Lee, Dong-Won;Shin, Seung-Young;Cho, Tae-Seok;Kwon, Young-Doo;Kwon, Soon-Bum
    • Journal of computational fluids engineering
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • To control the coating thickness of zinc in the process of continuous hot-dip galvanizing, it is known from early days that the gas wiping through an air knife system is the most effective because of the obtainable of uniformity of coating thickness, possibility of thin coating, working ability in high speed and simplicity of control. But, the gas wiping using in the galvanizing process brings about a problem of splashing from the strip edge for a certain high speed of coating. Also, it is known that the problem of splashing directly depends upon the galvanizing speed and nozzle stagnation pressure. In theses connections, in the present study, we proposed two kinds of air knife systems having the same expansion rate of nozzle, and the jet structures and coating thicknesses from a conventional and new proposed nozzles are compared. In numerical analysis, the governing equations consisted of two-dimensional time dependent Navier-Stokes equations, standard k-e turbulence model to solve turbulence stress and so on are employed. As a result, it is found that it had better to use the constant rate nozzle from the point view of the energy saving to obtain the same coating thickness. Also, to enhance the cutting ability at the strip, it is advisable to use an air knife with the constant expansion rate nozzle.

Comparison the quantification method of PCBs in waste transformer oils (절연유 중 폴리염화비페닐류의 정량법 비교)

  • Kim, Kyeo-Keun
    • Analytical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.206-215
    • /
    • 2005
  • Polychlorinated biphenyls (PCBs) were commercially produced as complex mixtures beginning in 1929. The PCBs manufactured commercially are known by a variety of trade names including; Aroclor (USA), Phenoclor (France), Kaneclor (Japan), Sovol (USSR) and so on. PCBs are a class of 209 congeners that were widely used in a wide variety of applications, including dielectric fluid in transformers and large capacitors; heat transfer fluids; hydraulic fluids; lubricating and cutting oils; and as additives in pesticides, paints, adhesives, sealants, and plastics. The quantification methods of peak matching and coefficient comparison were compared using the Aroclor 1242, 1248, 1254, 1260 standards. Also, six transformer oils were analyzed as a main source of polychlorinated biphenyls (PCBs) emission into the environment. The transformer oils contained the pure and mixed of Aroclor 1242, Aroclor 1254, and Aroclor 1260. The analytical results using two quantification methods showed the little difference between the measured results.

The Effect of Corrosion Inhibitors on Antimicrobial Activity of Biocide in Water-soluble Cutting Fluid (수용성 절삭유에서 방청제가 방부제의 항균효능에 미치는 영향)

  • 김현주;김성배
    • KSBB Journal
    • /
    • v.18 no.5
    • /
    • pp.393-397
    • /
    • 2003
  • The effect of corrosion inhibitors on antimicrobial activity of biocides (Kathon 886 MW, Triadine 3, Triadine 10 and Grotan BK) was investigated using the Pseudomonas aeruginosa which frequency of occurrence in contaminated fluids is very high and its growth and survival is excellent. When a biocide was used with a corrosion inhibitor, the antimicrobial activity of it was affected by the corrosion inhibitor used. The antimicrobial activity of Kathon 886 MW increased when corrosion inhibitor (each of SS 510, MEA) was used. Triadine 3, Triadine 10, Grotan BK showed the similar trend of antimicrobial effect for the corrosion inhibitors used. Their antimicrobial activities increased when the corrosion inhibitor such as CP-105, CP-E-7 and MEA was used individually. The antimicrobial activity of each corrosion inhibitor was also compared. The results showed that CP-E-7 and MEA was bioresistant and the other corrosion inhibitors were biosupportive. The antimicrobial activity of biocides was in the order of Triadine 10 < Triadine 3 < Kathon 886 MW < Grotan BK.

NUMERICAL METHOD FOR MOLTEN METAL FLOW SIMULATION WITH CUT CELL (Cut Cell을 고려하는 주조유동 해석 방법)

  • Choi, Y.S.;Hong, J.H.;Hwang, H.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.518-522
    • /
    • 2011
  • Cartesian grid system has mainly been used in the casting simulation even though it does not nicely represent sloped and curved surfaces. These distorted boundaries cause several problems. A special treatment is necessary to clear these problems. A cut cell method on Cartesian grids has been developed to simulate three-dimensional mold filling Cut cells at a cast-mold interface are generated on Cartesian grids. Governing equations were computed using volume and areas of cast at cut cells. In this paper, we propose a new method that can consider the cutting cells which are cut by casting and mold based on the patial cell treatment (PCT). This method provides a better representation of geometry surface and will be used in the computation of velocities that are defined on the cell boundaries in the Cartesian gird system. Various test examples for several casting process were computed and validated. The analysis results of more accurate fluid flow pattern and less momentum loss owing to the stepped boundaries in the Cartesian grid system were confirmed. We can know the momentum energy at the cut cell is conserved by using the cut cell method. By using the cut cell method. performance of computation gets better because of reducing the whole number of meshes.

  • PDF

An Experimental Study of Shell and Tube Heat Exchanger Performance with Baffle Spacing (배플수에 따른 원통다관형 열교환기 성능에 관한 실험 적 연구)

  • Lee, Yuk-Hyeong;Kim, Sun-Yeong;Park, Myeong-Gwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1748-1755
    • /
    • 2001
  • The shell and tube heat exchangers were introduced to apply to a big capacity condenser and a high pressure feed water heater for power plant in the beginning of 1990s. Design and manufacturing technology fur shell and tube heat exchangers have been developed until now. But it is very difficult to calculate the expected performance characteristics of the shell and tube heat exchanger, because there are many design parameters to be considered according to internal structure and the shell side heat transfer mechanism complicately related to the design parameters. Design parameters to be considered in the design stage of shell and tube heat exchanger are shell and tube side fluids, flow rate, inlet and outlet temperature, physical properties, type of heat exchanger, outer diameter, thickness, length of tube, tube arrangement, tube pitch, permissive pressure loss on both sides, type of baffle plate, baffle cutting ratio. The propose of study is an analysis TEMA(Tubular Exchanger Manufacturers Association) E shell and tube heat exchanger performance with changing a number of baffles(3, 5, 7, 9, 11) and tubes(16, 20) and determined optimal baffle spacing.

Study on OTEC System using Condenser Effluent from Nuclear Power Plant (원자력발전소 온배수를 이용한 해양온도차발전에 대한 연구)

  • Seo, Hyang-Min;Park, Sung-Seek;Shin, Sang-Ho;Kim, Chong-Bo;Kim, Nam-Jin
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1267-1272
    • /
    • 2008
  • OTEC power plants are studied as a viable option for the supply of clean energy. In this paper, the thermodynamic performance of OTEC system was calculated. The results show that the working fluids such as R32 and R125 would be alternatives based upon cutting down the system size, environmental preservation, and conditions without having a severe penalty in efficiency. the initial cost significantly. The regeneration system increase in energy efficiency, and the system can generate electricity when the difference in warm and cold seawater inlet temperatures are greater than $15^{\circ}C$. Also, the system efficiency of OTEC power plant using the condenser effluent from nuclear power plant instead of the surface water increased about 2%.

  • PDF

First Studies for the Development of Computational Tools for the Design of Liquid Metal Electromagnetic Pumps

  • Maidana, Carlos O.;Nieminen, Juha E.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.82-91
    • /
    • 2017
  • Liquid alloy systems have a high degree of thermal conductivity, far superior to ordinary nonmetallic liquids and inherent high densities and electrical conductivities. This results in the use of these materials for specific heat conducting and dissipation applications for the nuclear and space sectors. Uniquely, they can be used to conduct heat and electricity between nonmetallic and metallic surfaces. The motion of liquid metals in strong magnetic fields generally induces electric currents, which, while interacting with the magnetic field, produce electromagnetic forces. Electromagnetic pumps exploit the fact that liquid metals are conducting fluids capable of carrying currents, which is a source of electromagnetic fields useful for pumping and diagnostics. The coupling between the electromagnetics and thermo-fluid mechanical phenomena and the determination of its geometry and electrical configuration, gives rise to complex engineering magnetohydrodynamics problems. The development of tools to model, characterize, design, and build liquid metal thermomagnetic systems for space, nuclear, and industrial applications are of primordial importance and represent a cross-cutting technology that can provide unique design and development capabilities as well as a better understanding of the physics behind the magneto-hydrodynamics of liquid metals. First studies for the development of computational tools for the design of liquid metal electromagnetic pumps are discussed.

Design and construction of fluid-to-fluid scaled-down small modular reactor platform: As a testbed for the nuclear-based hydrogen production

  • Ji Yong Kim;Seung Chang Yoo;Joo Hyung Seo;Ji Hyun Kim;In Cheol Bang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.1037-1051
    • /
    • 2024
  • This paper presents the construction results and design of the UNIST Reactor Innovation platform for small modular reactors as a versatile testbed for exploring innovative technologies. The platform uses simulant fluids to simulate the thermal-hydraulic behavior of a reference small modular reactor design, allowing for cost-effective design modifications. Scaling analysis results for single and two-phase natural circulation flows are outlined based on the three-level scaling methodology. The platform's capability to simulate natural circulation behavior was validated through performance calculations using the 1-D system thermal-hydraulic code-based calculation. The strategies for evaluating cutting-edge technologies, such as the integration of a solid oxide electrolysis cell for hydrogen production into a small modular reactor, are presented. To overcome experimental limitations, the hardware-in-the-loop technique is proposed as an alternative, enabling real-time simulation of physical phenomena that cannot be implemented within the experimental facility's hardware. Overall, the proposed versatile innovation platform is expected to provide valuable insights for advancing research in the field of small modular reactors and nuclear-based hydrogen production.

Contact dermatitis among male workers exposed to metalworking fluids (금속가공유를 취급하는 남성 근로자의 접촉피부염)

  • Jin, Young-Woo;Lee, Jun-Young;Kim, Eun-A;Park, Seung-Hyun;Chai, Chang-Ho;Choi, Yong-Hyu;Kim, Kyoo-Sang
    • Journal of Preventive Medicine and Public Health
    • /
    • v.30 no.2 s.57
    • /
    • pp.381-391
    • /
    • 1997
  • In an epidemiological study of metal workers exposed to metalworking fluids (MWF), the prevalence time of Evolution, seasonal occurrence and clinical type of contact dermatitis were investigated. Compostional analysis of MWF with HPLC, dermatological examination and two consecutive questionnaire surveys were conducted. Study population was divided into two groups ; workers contact to cutting oil and workers contact to rust preventive oil. In the analysis of MWF, aliphatic hydrocarbons, having 12-20 carbons, was most common composition(49.04%) of cutting oil otherwise, major contents (90.99%) of the rust preventives oil were aliphatic hydrocarbons composed of 6-9 carbons. The frequency (point prevalence) of contact dermatitis(CD) was 7(12.7 per 100 subjects) in the dermatological examination of 55 workers. As the result of second survey for contact dermatitis, cumulative prevalence of oil working full-time and recent 1 year prevalence in two groups were 28.0, 16.7 and 15.1, 12.5 per 100 subjects. There were no difference in the prevalence of CD by oil, age, oil contact duration. Summer is the most common evolution season in workers exposed to cutting oil, but not in workers exposed to rust preventive oil. Major clinical type of CD was erythematous papules in both groups. It presents the importance of preventive measures that 51.1% suffer from contact dermatitis had medical care at their own expense, and 47.1% of them felt serious about their contact dermatitis. From the fact that 68.6% think cotton gloves protective apparatus, we emphasize the need for health education.

  • PDF

MEMS Fabrication of Microchannel with Poly-Si Layer for Application to Microchip Electrophoresis (마이크로 칩 전기영동에 응용하기 위한 다결정 실리콘 층이 형성된 마이크로 채널의 MEMS 가공 제작)

  • Kim, Tae-Ha;Kim, Da-Young;Chun, Myung-Suk;Lee, Sang-Soon
    • Korean Chemical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.513-519
    • /
    • 2006
  • We developed two kinds of the microchip for application to electrophoresis based on both glass and quartz employing the MEMS fabrications. The poly-Si layer deposited onto the bonding interface apart from channel regions can play a role as the optical slit cutting off the stray light in order to concentrate the UV ray, from which it is possible to improve the signal-to-noise (S/N) ratio of the detection on a chip. In the glass chip, the deposited poly-Si layer had an important function of the etch mask and provided the bonding surface properly enabling the anodic bonding. The glass wafer including more impurities than quartz one results in the higher surface roughness of the channel wall, which affects subsequently on the microflow behavior of the sample solutions. In order to solve this problem, we prepared here the mixed etchant consisting HF and $NH_4F$ solutions, by which the surface roughness was reduced. Both the shape and the dimension of each channel were observed, and the electroosmotic flow velocities were measured as 0.5 mm/s for quartz and 0.36 mm/s for glass channel by implementing the microchip electrophoresis. Applying the optical slit with poly-Si layer provides that the S/N ratio of the peak is increased as ca. 2 times for quartz chip and ca. 3 times for glass chip. The maximum UV absorbance is also enhanced with ca. 1.6 and 1.7 times, respectively.