• Title/Summary/Keyword: cutting efficiency

Search Result 452, Processing Time 0.028 seconds

Cutting Efficiency and Mechanical Characteristics of Diamond Micro-blades Containing WS2 Lubricant (WS2 윤활제를 첨가한 마이크로 다이아몬드 블레이드의 절삭성능과 기계적 특성)

  • Kim, Song-Hee;Jang, Jae-Cheol
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.1
    • /
    • pp.37-42
    • /
    • 2012
  • $WS_2$ powder was added to the Cu/Sn bond metal of diamond micro-blades for machining of semi-conductor and IC chips to improve cutting efficiency. The effect of $WS_2$ additive on cutting efficiency was investigated and compared with the micro-blades with $MoS_2$ developed in previous research. Flexural strength, frictional coefficient, and wear resistance of blades decreased with $WS_2$ but wear depth increased. It was found that the blades including $WS_2$ consumed less momentary energy than the blades containing $MoS_2$ during dicing test. Micro-blades containing $WS_2$ exhibited lower flexural strength than the blades with $MoS_2$ resulting from higher amount of sintering defects relevant to the less effectiveness of $WS_2$ on fluidity. The effect of $WS_2$ and $MoS_2$ on fluidity during sintering was analyzed in terms of mismatching degree between the longitudinal direction of lubricant particles and the perpendicular direction to the compact loading. The blade with 8.1 vol.% of $WS_2$ showed the best cutting efficiency.

Machining Technology of Scroll shape by Feed control method (이송속도 제어를 통한 스크롤 형상의 가공기술)

  • 심상우;강명창;김정석;정현출
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.123-127
    • /
    • 1999
  • This paper suggests the establishment of high-accuracy and high-efficiency machining method of scroll shape workpiece by using the feed control method. The cutting paths for machining the inside and outside surfaces of the scroll-shape workpiece are calculated, and the calculation method of the cutting chip areas based on the coordinate of the base circle is shown. A feed control method is proposed for a constant cutting area and cutting force. By machining test of scroll shape workpiece, The machined accuracy of wrap, tool wear, and surface roughness are evaluated. By this method, Reduction of the machining time and large increase of the efficiency can be expected.

  • PDF

Rock cutting behavior of worn specially-shaped PDC cutter in crystalline rock

  • Liu, Weiji;Yang, Feilong;Zhu, Xiaohua;Zhang, Yipeng;Gong, Shuchun
    • Geomechanics and Engineering
    • /
    • v.31 no.3
    • /
    • pp.249-263
    • /
    • 2022
  • The specially-shaped Polycrystalline Diamond Compact (PDC) cutter is widely used in drill bit design due to its advantages of high rock cutting efficiency, strong impact resistance and long service life in hard and abrasive formation drilling. A detailed understanding of rock cutting behavior of worn specially-shaped PDC cutter is essential to improve the drilling efficiency and decrease the drilling costs. In this paper, the theoretical models of two new principles (loading performance (LP) and cutting performance (CP)) are derived for evaluating the cutting process of worn specially-shaped cutter, the theoretical models consider the factors, such as cutter geometry, aggressiveness, stress state, working life, and rock cutting efficiency. Besides, the numerical model of heterogeneous granite is developed using finite element method combined with Voronoi tessellation, the LP and CP of 12 kinds of worn specially-shaped PDC (SPDC) cutters are analyzed. The results found that the mechanical specific energy (MSE) of worn cutters first increase and then decrease with increasing the cutting depth, and the MSE increase with the increase of back rake angle except for Conical cutter and Wedge-shaped cutter. From the perspective of CP, the worn PDC cutters are more suitable for the smaller cutting depths, and the back rake angle has little effect on the CP of the specially-shaped worn PDC cutters. Conical cutter, Saddle-shaped cutter and Ellipse-shaped cutter have the highest CP value, while Rhombus-shaped cutter, Convex cutter and Wedge-shaped cutter have the lowest value in selecting cutters. This research leads to an enhanced understanding of rock-breaking mechanisms of worn SPDC cutters, and provides the basis to select of specially-shaped PDC cutters for the specific target formation.

Cutting Force Reduction Characteristics by Compounding Electrolytic Machining in Ball End Milling (볼엔드밀 절삭에서 전해복합에 의한 절삭력 저감 특성)

  • 이영표;박규열
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.268-273
    • /
    • 2000
  • In this report, a new method compounding the electrolytic machining with ball end milling process to increase the machining efficiency was introduced. And the cutting characteristics by electrolytic machining conditions was examined. From the experimental results, it was confirm-ed that effect of cutting force reduction obtained at the condition of transpassive state of electrolytic machining conditions.

  • PDF

Growth Characteristics of Cutting Culms Sectioned at Different Positions from Three Reed Populations (세 갈대 개체군의 절단 부위별 삽목 생장 특성)

  • Hong, Mun-Gi;Kim, Jae Geun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.15 no.1
    • /
    • pp.53-62
    • /
    • 2012
  • Culm cutting is very effective and convenient method for asexual propagation and even much less destructive than the other ways such as excavation of rhizomes. Despite that culm cutting is such a useful method, only few investigations for raising its efficiency have been carried out. We tried to examine the effect of different geographical populations and cutting sections on the shoot emergence, biomass production and its allocation in terms of cutting efficiency. Culms were sampled from three environmentally distinct wetlands : riparian marsh, salt marsh and montane fen and then they were cut separately into four sections from the bottom to the top part. Both factors of different population and section affected the shoot emergence together. Middle parts on the culm always showed more shoot emergence irrespective of different population. On the other hand, first section from salt marsh and fourth section from the montane fen did not exhibit any shoot emergence. Significant difference in increase of shoot emergence between different sections during investigation period was confirmed only from salt marsh population. Not only different population but also appropriate cutting section should be considered together for better efficiency in cutting of reed culms.

Chip breaking characteristics using non-dimensional parameter in metal cutting (절삭 가공시 무차원 파라미터에 의한 칩 절단특성)

  • Choi, Won-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.2
    • /
    • pp.181-186
    • /
    • 1999
  • For an unmanned machining system, the control and disposal of chips is one of the most serious problems at present. In order to perform chip control, feed/land length($F_L$) was introduced, and using this parameter, the cutting performance and chip breaking characteristics of groove-type and the land -angle-type chip formers were assessed. The specific cutting energy consumed and the shape of broken chips with its breaking cycle time were evaluated to find out the ranges of $F_L$ value where efficient cutting and effective chip breaking could be achieved. The C type chip was found to be the most preferable from the view point of cutting efficiency.

  • PDF

Study on Vibrated Cutting Blade with Hinge Mechanism (힌지구조 진동절단장치에 관한 연구)

  • Kang, Dong-Bae;Ahn, Joong-Hwan;Son, Seong-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.443-448
    • /
    • 2010
  • Rapid advance in information technology requires high performance devices with compact size. Integrated multi-layer electronic element with different functions enables those compact devices to possess various performances and powerful capabilities. In mass production, the multi-layer electronic element is manufactured as a bulk type with a large number of parts for productivity. However, this may cause the electronic part to be damaged in the cutting process of the bulk elements to separate into each part. Therefore the cutting performance of multi-layer element bulk is playing an important role in the view of production efficiency. This study focuses on the cutting characteristics of multi-layer electronic elements. In order to increase the efficiency, the vibration cutting method was applied to the blade cutting machine. Flexure hinge structure, which is an physical amplifier of increasing displacement, was attached to the vibration cutting device for machining efficiency. The behaviors of flexure hinge were modeled with Lagrange equation and simulated with finite element method (FEM). Performance of hinge structure was verified by experimental modal analysis (EMA) for hinge structure to be tuned to the specific mode of vibrations. Cutting experiments of multi-layer elements were conducted with the proposed vibrating cutting module, and the characteristics was analyzed.

EFFECTS OF CUTTING FREQUENCY AND NITROGEN FERTILIZATION ON DRY MATTER YIELD OF REED CANARYGRASS (Phalaris arundinacea L.) IN UNCULTIVATED RICE PADDY

  • Lee, J.S.;Ahn, J.H.;Jo, I.H.;Kim, D.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.6
    • /
    • pp.737-741
    • /
    • 1996
  • Dry matter yield of reed canarygrass was investigated in uncultivated rice paddy in Korea, and an attempt was made to estimate the most economic and efficient cutting frequency and rates of nitrogen (N) fertilization, for increased production of reed canarygrass. Total dry matter yields of reed canarygrass per year were 7.4-15.7, 8.5-16.1, and 7.5-13.4 tons/ha in 3, 4, and 5 cutting frequencies, respectively, and over the N treatments of 0-120 kg N/ha/cut. When cut 3 or 5 times annually, the 2nd cut produced the highest proportion of total yield at 38.4 and 33.0%, respectively, when cut 4 times the 3rd cut was highest (38.3%). The ranges of economic N level, limiting N level and efficiency of dry matter production were 243.3-293.0, 387.2, and 14.6 kg DM/kg N, respectively. These indicators were particularly low for the 5 cutting frequency possibly because of the unusually high temperature in the summer season. The best cutting frequency for the dry matter production of reed canarygrass in 1994 was 3 per year because of the higher efficiency of dry matter production.

Arc efficiency and kerf width in plasma arc cutting process (플라즈마 절단공정에서의 아아크 효율과 절단폭)

  • 노태정;나석주
    • Journal of Welding and Joining
    • /
    • v.5 no.1
    • /
    • pp.23-33
    • /
    • 1987
  • Plasma arc cutting is a fusion cutting process in which a gas constricted arc is employed to produce high temperature, high velocity jet at the workpiece. Even though the plasma arc cutting has been wid¬ely used in the industry, very little work has been done on the analysis of the process. In this paper, the kerf width was numerically analyzed by soving the temperature distribution in base metal under consideration of the latent heat effect. In modelling the heat flow problem, the heat intensity of the plasma arc was assumed to have a Gaussion distribution in the transverse direction and expone¬ntially decreasing in the thickness direction. The thermal efficiency and the heat input ratio of the top surface were experimentally deterimned for various thickness and cutting conditions, and used in numerical calculation of the kerf width. The experimental results were in eonsiderabely good agreement with the theoretically predicted kerf width.

  • PDF

Performance assessment of HEPA filter against radioactive aerosols from metal cutting during nuclear decommissioning

  • Lee, Min-Ho;Yang, Wonseok;Chae, Nakkyu;Choi, Sungyeol
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.1043-1050
    • /
    • 2020
  • Radioactive aerosols are produced during the cutting of contaminated and activated metals. They must be collected and removed by a high-performing filtration system before releasing to the environment from the decommissioning workplace. The filtration system requires regular replacement to ensure the sufficient removal of radioactive aerosols because its filtration efficiency gradually decreases. This study evaluates the efficiency and lifetime of filters while cutting metals by using a plasma arc cutter. Particularly, this study considers the aerodynamic diameter distribution of number and mass concentrations for aerosols from 6 nm to 10 ㎛ when evaluating the performance of filters. After 20 time reuses for cutting operation performed in a cutting chamber, the removal efficiency is reduced from over 99 to below 93% at 2 ㎛. The results are used to analyze the lifetime of filters, the frequencies of their replacements, and impact on internal radiation dose.