• Title/Summary/Keyword: cutout ratios

Search Result 8, Processing Time 0.019 seconds

Buckling of axially compressed composite cylinders with geometric imperfections

  • Taheri-Behrooz, Fathollah;Omidi, Milad
    • Steel and Composite Structures
    • /
    • v.29 no.4
    • /
    • pp.557-567
    • /
    • 2018
  • Cylindrical shell structures buckle at service loads which are much lower than their associated theoretical buckling loads. The main source of this discrepancy is the presence of various imperfections which are created on the cylinder body during different processes as manufacturing, handling, assembling and machining. Many cylindrical shell structures are still designed against buckling based on the experimental data introduced by NASA SP-8007 as conservative lower bound curves. This study employed the numerical based Linear Buckling mode shape Imperfection (LBMI) method and modified it using a stochastic method to assess the effect of geometrical imperfections in more details on the buckling of cylindrical shells with and without the cutout. The comparison of results with those obtained from the numerical Simcple Perturbation Load Imperfection (SPLI) method for cylinders with and without cutout revealed a good correlation. The effect of two parameters of size and number of cutouts on the buckling load was investigated using the linear buckling and Modified LBMI methods. Results confirmed that in cylinders with a small cutout inserting geometrical imperfection using either SPLI or modified LBMI methods significantly reduced the value of the predicted buckling load. However, in cylinders with larger cutouts, the effect of the cutout is dominant, thus considering geometrical imperfection had a minor effect on the buckling loads predicted by both SPLI and modified LBMI methods. Furthermore, the modified LBMI method was employed to evaluate the combination effect of cutout numbers and size on the buckling load. It is shown that in small cutouts, an increasing in the cutout size up to a certain value resulted in a remarkable reduction of the buckling load, and beyond that limit, the buckling loads were constant against D/R ratios. In addition, the cutout number shows a more significant effect on decreasing the buckling load at small D/R ratios than large D/R ratios.

Free vibration of laminated composite skew plates with central cutouts

  • Lee, Sang-Youl;Park, Taehyo
    • Structural Engineering and Mechanics
    • /
    • v.31 no.5
    • /
    • pp.587-603
    • /
    • 2009
  • We performed a free vibration analysis of skew composite laminates with or without cutout based on the high-order shear deformation plate theory (HSDT). The effects of skew angles and ply orientations on the natural frequencies for various boundary conditions are studied using a nonlinear high-order finite element program developed for this study. The numerical results are in good agreement with those reported by other investigators for simple test cases, and the new results reported in this paper show the interactions between the skew angle, layup sequence and cutout size on the free vibration of the laminate. The findings highlight the importance of skew angles when analyzing laminated composite skew plates with cutout or without cutout.

Optimum arrangement of stiffener on the buckling behaviour of stiffened composite panels with reinforced elliptical cutouts subjected to non-uniform edge load

  • Kalgutkar, Akshay Prakash;Banerjee, Sauvik;Rajanna, T.
    • Steel and Composite Structures
    • /
    • v.42 no.4
    • /
    • pp.427-446
    • /
    • 2022
  • Cutouts in the beams or plates are often unavoidable due to inspection, maintenance, ventilation, structural aesthetics purpose, and sometimes to lighten the structures. Therefore, there will be a substantial reduction in the strength of the structure due to the introduction of the cutouts. However, these cutouts can be reinforced with the different patterns of ribs (stiffener) to enhance the strength of the structure. The present study highlights the influence of the elliptical cutout reinforced with a different pattern of ribs on the stability performance of such stiffened composite panels subjected to non-uniform edge loads by employing the Finite element (FE) technique. In the present formulation, a 9-noded heterosis element is used to model the skin, and a 3-noded isoparametric beam element is used to simulate the rib that is attached around a cutout in different patterns. The displacement compatibility condition is employed between the plate and stiffener, and arbitrary orientations are taken care by introducing respective transformation matrices. The effect of shear deformation and rotary inertia are incorporated in the formulation. A new mesh configuration is developed to house the attached ribs around an elliptical cutout with different patterns. Initially, a study is performed on the panels with different stiffener schemes for various ply orientations and for different stiffener depth to width ratios (ds/bs) to determine an optimal stiffener configuration. Further, various parametric studies are conducted on an obtained optimal stiffened panel to understand the effect of cutout size, cutout orientation, panel aspect ratio, and boundary conditions. Finally, from the analysis, it can be observed that the arrangement of the stiffener attached to a panel has a major impact on the buckling capacity of the stiffened panel. The stiffener's depth to width ratio also significantly influences the buckling characteristic.

Buckling behavior of strengthened perforated plates under shear loading

  • Cheng, Bin;Li, Chun
    • Steel and Composite Structures
    • /
    • v.13 no.4
    • /
    • pp.367-382
    • /
    • 2012
  • This paper is dedicated to the buckling behaviors of strengthened perforated plates under edge shear loading, which is a typical load pattern of steel plates in civil engineering, especially in plate and box girders. The square plates considered each has a centric circular hole and is simply supported on four edges in the out-of-plane direction. Three types of strengthening stiffeners named ringed stiffener (RS), flat stiffener (FSA and FSB) and strip stiffener (SSA, SSB and SSC) are mainly discussed. The finite element method (FEM) has been employed to analyse the elastic and elasto-plastic buckling behavior of unstrengthened and strengthened perforated plates. Results show that most of the strengthened perforated plates behave higher buckling strengths than the unstrengthened ones, while the enhancements in elastic buckling stress and elasto-plastic ultimate strength are closely related to stiffener types as well as plate geometric parameters including plate slenderness ratio and hole diameter to plate width ratio. The critical slenderness ratios of shear loaded strengthened perforated plates, which determine the practical buckling pattern (i.e., elastic or elasto-plastic buckling) of the plates, are also studied. Based on the contrastive analyses of strengthening efficiency considering the influence of stiffener consumption, the most efficient cutout-strengthening methods for shear loaded perforated square plates with different slenderness ratios and circular hole diameter to plate width ratios are preliminarily identified.

Vibration and buckling analyses of laminated panels with and without cutouts under compressive and tensile edge loads

  • Rajanna, T.;Banerjee, Sauvik;Desai, Yogesh M.;Prabhakara, D.L.
    • Steel and Composite Structures
    • /
    • v.21 no.1
    • /
    • pp.37-55
    • /
    • 2016
  • In this study, the influence of centrally placed circular and square cutouts on vibration and buckling characteristics of different ply-oriented laminated panels under the action of compressive and/or tensile types of non-uniform in-plane edge loads are investigated. The panels are inspected under the action of uniaxial compression, uniaxial tension and biaxial, compression-tension, loading configurations. Furthermore, the effects of different degrees of edge restraints and panel aspect ratios are also addressed in this work. Towards this, a nine-node heterosis plate element has been adopted which includes the effect of shear deformation and rotary inertia. According to the results, the tensile buckling loads are higher than that of compressive buckling loads. However, the tensile buckling load continuously reduces with the increased cutout sizes irrespective of ply-orientations. This is also true for compressive buckling loads except for some particular ply-orientations with higher sized cutouts.

Estimation of Buckling and Ultimate Strength of a Perforated Plate under Thrust (면내압축하중을 받는 유공판의 좌굴 및 최종강도 평가에 관한 연구)

  • Ko, Jae-Yong;Park, Joo-Shin;Joo, Jong-Gil
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.10 no.2 s.21
    • /
    • pp.41-47
    • /
    • 2004
  • Plate has cutout inner bottom and girder and Door etc. in hull construction absence is used much, and this is strength in case must be situated, but establish in region that high stress interacts sometimes fatally in region that there is no big problem usually by purpose of weight reduction, a person and freight movement, piping etc.. Because cutout‘s existence is positioning in this place, and, elastic bucking strength by load causes large effect in ultimate strength. Therefore, perforated plate elastic bucking strength and ultimate strength is one of important design criteria to decide structural elements size at early structure design step of a ship. Therefore, we need reasonable & reliable design formula for elastic bucking strength of the perforated plate. The author computed numerically ultimate strength change about several aspect ratios, cutout dimension, and plate thickness by using ANSYS Finite element analysis code based on finite element method in this paper.

  • PDF

Free Vibration Analysis of Perforated Steel Plates with Various Cutout Curvatures and Rotations (곡률과 회전을 고려한 유공 강판의 자유진동해석)

  • Woo, Jin-Ho;Na, Won-Bae
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.61-70
    • /
    • 2010
  • This study presents free vibration analyses of perforates steel plates with various cutouts. Four different parameters (shape, size, curvature radius ratio, and rotation of cutouts) were considered to investigate the effects of those parameters on the free vibration characteristics, such as natural frequencies of the perforated steel plates. Three different shapes of cutouts are circle, square, and triangle, and the considered sizes are 5, 10, 15, 20, and 25 mm. For the triangular and square cutouts, the characteristic radii of the inscribed circles of those cutouts were defined. In addition, the curvature radius ratio was defined as the ratio of curvature radius of bluntness and the characteristic radius. Then, total seven different curvature radius ratios (0, 0.1, 0.3, 0.5, 0.7, 0.9, and 1) were considered. To investigate the rotation effect of the cutouts, it was considered four rotations ($0^{\circ}$, $15^{\circ}$, $30^{\circ}$, and $45^{\circ}$) for the square cutouts and three rotations (0, 15, and 30) for the triangular cutouts. All the free vibration analyses were conducted using a general purpose finite element program. From the analyses we found that the most influential parameter for the free vibration response of the perforated plates is the size of cutout. The other factors such as the shape, curvature radius ratio, and rotation are minors; they mainly change the natural frequency as long as the size effect is accompanied.

Strengthening of Cutouts in Existing One-Way Spanning R. C. Flat Slabs Using CFRP Sheets

  • Shehab, Hamdy K.;Eisa, Ahmed S.;El-Awady, Kareem A.
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.2
    • /
    • pp.327-341
    • /
    • 2017
  • Openings in slabs are usually required for many different applications such as aeriation ducts and air conditioning. Opening in concrete slabs due to cutouts significantly decrease the member stiffness. There are different techniques to strengthen slabs with opening cutouts. This study presents experimental and numerical investigations on the use of Carbon Fiber Reinforced Polymers (CFRP) as strengthening material to strengthen and restore the load carrying capacity of R.C. slabs after having cutout in the hogging moment region. The experimental program consisted of testing five (oneway spanning R.C. flat slabs) with overhang. All slabs were prismatic, rectangular in cross-section and nominally 2000 mm long, 1000 mm width, and 100 mm thickness with a clear span (distance between supports) of 1200 mm and the overhang length is 700 mm. All slabs were loaded up to 30 kN (45% of ultimate load for reference slab, before yielding of the longitudinal reinforcement), then the load was kept constant during cutting concrete and steel bars (producing cut out). After that operation, slabs were loaded till failure. An analytical study using finite element analysis (FEA) is performed using the commercial software ANSYS. The FEA has been validated and calibrated using the experimental results. The FE model was found to be in a good agreement with the experimental results. The investigated key parameters were slab aspect ratio for the opening ratios of [1:1, 2:1], CFRP layers and the laminates widths, positions for cutouts and the CFRP configurations around cutouts.