Electron-neutral collision frequency is one of the important parameters in the plasma physics and in industrial plasma engineering. We can understand the momentum, energy, and charge transport properties of the plasma using electron-neutral collision frequency.[1] The wave-cutoff method is a diagnostic method for the electron density measurement, but the cutoff peak value depends on gas pressure. The wave-cutoff signal becomes unclear as increasing gas pressure. The reason of pressure dependence is that the electron-neutral collision disturbs electron motion so that microwave can propagate through plasma at plasma frequency.[2] Using the pressure dependence of wave-cutoff method we can find the electron-neutral collision frequency. At first we tried to confirm this method using well known gas such as Ar. The cutoff signal decrease as increasing gas pressure (the simulation result). The wave-cutoff signal is unclear at a gas pressure of 500 mTorr. (electron density $1.0{\times}10^{10}/cm^3$, electron temperature 1.7 eV, electron -neutral collision frequency~1 GHz). In this condition, the electron-neutral collision frequency is closed to the wave-cutoff frequency.
Electromagnetic wave simulation was performed to predict characteristics of manufactured cutoff probe at low temperature magnetized plasma medium. Microwave cutoff probe is designed for research the properties of magnetized inductively coupled plasma. It was shown that the cutoff probe method can safely be used for weakly magnetized high density plasma sources. Cutoff probe system with two port network analyzer has been prepared and applied to measure electron density distributions in large area, 13.56MHz driven weakly magnetized inductively coupled plasma source. The results shown that, the plasma frequency confirmed cut-off characteristics in low temperature plasma. Especially, cut-off characteristics was found at upper hybrid resonance frequency in the environment of the magnetic field. In case of a induced weak magnetic field in inductively coupled plasma, plasma density estimated from the cutoff frequency in the same way at unmagnetized plasma due to nearly same plasma frequency and upper hybrid resonance frequency. The plasma density is increased and uniformity is improved by applying a induced weak magnetic field in inductively coupled plasma.
The wave-cutoff tool is a new diagnostic method to measure electron density and electron temperature. Most of the plasma diagnostic tools have the disadvantage that their application to processing plasma where toxic and reactive gases are used gives rise to many problems such as contamination, perturbation, precision of measurement, and so on. We can minimize these problems by using the wave-cutoff method. Here, we will present the results obtained through the development of the wave-cutoff diagnostic method. The frequency spectrum characteristics of the wave-cutoff probe will be obtained experimentally and analyzed through the microwave field simulation by using the CST-MW studio simulator. The plasma parameters are measured with the wave-cutoff method in various discharge conditions and its results will be compared with the results of Langmuir probe. Another disadvantage is that other diagnostic methods spend a long time (~ a few seconds) to measure plasma parameters. In this presentation, a fast measurement method will be also introduced. The wave-cutoff probe system consists of two antennas and a network analyzer. The network analyzer provides the transmission spectrum and the reflection spectrum by frequency sweeping. The plasma parameters such as electron density and electron temperature are obtained through these spectra. The frequency sweeping time, the time resolution of the wave-cutoff method, is about 1 second. A short pulse with a broad band spectrum of a few GHz is used with an oscilloscope to acquire the spectra data in a short time. The data acquisition time can be reduced with this method. Here, the plasma parameter measurement methods, Langmuir probe, pulsed wave-cutoff method and frequency sweeping wave-cutoff method, are compared. The measurement results are well matched. The real time resolution is less than 1 ?sec. The pulsed wave-cutoff technique is found to be very useful in the transient plasmas such as pulsed plasma and tokamak edge plasma.
Kim, D.W.;You, S.J.;Na, B.K.;Kim, J.H.;Chang, H.Y.;Oh, W.Y.
한국진공학회:학술대회논문집
/
한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
/
pp.147-147
/
2012
Cutoff probe has been used for measuring a plasma density using the cutoff peak which is located at the plasma frequency in the low pressure plasma. However, research on analysis of low frequency region of transmission microwave frequency (TMF) spectrum does not performed even though important plasma parameters are located in the low frequency region, i.e., ion plasma frequency and collision frequency. In this research, we analyzed the low frequency region of the TMF spectrum. Experimental results reveal the effect of plasma parameters on the low frequency region on the TMF spectrum. Based on the response of TMF spectrum from changing of plasma parameters, deduction of the plasma parameters was tried. This comprehensive analysis of TMF spectrum expands applicable area of cutoff probe.
We proposed a new measurement method of cutoff probe using the reactance spectrum of the plasma in cutoff probe system instead of transmission spectrum. The high accurate reactance spectrum of the plasma which is expected in previous circuit simulation of cutoff probe [1] was measured by using the automatic port extension method of the network analyzer. The measured reactance spectrum is good agreement with E/M wave simulation result (CST Microwave Studio). From the analysis of the measured reactance spectrum based on the circuit modeling, not only the electron density but also electron-neutral collision frequency can be simply obtained. The obtained results of electron density and e-n collision frequency were presented and discussed in wide range of experimental conditions, together with comparison result with previous methods (a previous cutoff probe using transmission spectrum and a single langmuir probe).
Nearfield acoustic holography is known as a powerful tool to study sound radiation from a structure. In this work, the so called backward propagation of sound pressure field is studied to obtain the structure velocity distribution. The results, which were obtained using FFT algorithms, are presented for a finite plate excited at the frequencies above and below coincidence. These results illustrate the effect of stand-off distance and noise. An optimum cutoff frequency in wavenumber domain was suggested to reduce the effects of evanescent wave in the backward propagation. The experimental results were also included for a plate to demonstrate the effectiveness of the suggested cutoff frequency. The optimum cutoff frequency to exclude the unwanted noise in the process of reconstruction of the velocity field gives the good results in both simulations and experiments.
A CMOS Gm-C filter with variable cutoff frequency applicable for using in the direct conversion receiver is designed. The designed filter comprises the CMOS differential transconductors, and the gm of the transconductor is controlled by the bias voltage. This configuration can compensate variant of the cutoff frequency which could be generated by external noises, and also be used in multiband receiver. As a results of HSPICE simulation, the control range of the cutoff frequency is $1.5MHz{\sim}3.5MHz$ and the gain control range is $-2.8dB{\sim}2.6dB$. The layout of the designed 5th-order Elliptic low-pass filter is performed to fabricate a chip using $2.5V-0.25{\mu}m$ CMOS processing parameter.
본 논문에서는 초광대역의 저지대역과 우수한 cutoff 특성을 가지는 새로운 저역통과 필터를 제안하였다. 우수한 cutoff특성을 얻기 위해 여러단을 배열하는 기존이 저역통과 필터의 단점을 극복하기 위해 두 개방 스터브 사이의 커플링 효과를 이용하였고, 접지면에 슬롯을 형성하여 고주파 부분에서의 저지대역 특성을 개선하였다. 제작한 저역통과 필터는 19.2 ㎜ × 14.9 ㎜ 의 크기로 통과대역에서의 삽입손실은 -0.15 dB 이하이며 1.1 ㎓에서 -3 dB의 차단주파수를 가진다. 저지대역폭은 삽입손실 -20 dB를 기준으로 1.5 ㎓에서 30 ㎓ 이상의 광대역을 이루어 기존 저역통과 필터의 저지대역폭을 획기적으로 증가시켰다.
Microwave diagnostics method for plasma science and engineering is vigorous research area for its good characteristics such as high sensitivity, reliability, and broad measurement spectrum from low density plasma to high density. We investigate mechanism of microwave probes (hairpin, impedance and absorbtionf probe) and apply it for interpretation of full transmitted spectrum of cutoff probe. Mechanism of the spectrum having same key roles of I-V curve of Langmuir probe is not exactly revealed yet in spite of its importance. This study elucidates physics behind it using a circuit model and E/M wave simulation. Circuit model reveals exact cut-off peak frequency taking account of a collision frequency and a plasma frequency and it enable precise diagnostics of plasma densty from low pressure to high pressre. Cut-off like peaks have been obstacle for choosing cut-off peak is analyzed by E/M simulation and one of cutoff like peaks made by probe holder used for acquire plasma density with cutoff peak applying the hairpin relation. Furthermore, phase difference method for plasma density is conducted. This method uses a single microwave frequency source and it is low-priced.
Electron-neutral collision frequency is one of the important parameters in the plasma physics. Recently, It is employed to monitor the plasma processing in industrial plasma engineering [1]. Using the wave-cutoff probe with network analyzer, the plasma impedance was measured in inductively coupled argon plasma and analyzed to determine the resonance frequency. The electron-neutral collision frequency is directly calculated from the resonance frequency. The calculated electron-neutral collision frequency is good agree with reference which is calculated by measured EEDF using single langmuir probe (SLP).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.