• Title/Summary/Keyword: cut subset

Search Result 8, Processing Time 0.026 seconds

A Cut Generation Method for the (0, 1)-Knapsack Problem with a Variable Capacity (용량이 변화하는 (0, 1)-배낭문제에 대한 절단평면 생성방안)

  • 이경식;박성수
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.25 no.3
    • /
    • pp.1-15
    • /
    • 2000
  • In this paper, we propose a practical cut generation method based on the Chvatal-Gomory procedure for the (0, 1)-Knapsack problem with a variable capacity. For a given set N of n items each of which has a positive integral weight and a facility of positive integral capacity, a feasible solution of the problem is defined as a subset S of N along with the number of facilities that can satisfy the sum of weights of all the items in S. We first derive a class of valid inequalities for the problem using Chvatal-Gomory procedure, then analyze the associated separation problem. Based on the results, we develop an affective cut generation method. We then analyze the theoretical strength of the inequalities which can be generated by the proposed cut generation method. Preliminary computational results are also presented which show the effectiveness of the proposed cut generation method.

  • PDF

Simple Algorithm for Baseball Elimination Problem (야구 배제 문제의 단순 알고리즘)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.3
    • /
    • pp.147-152
    • /
    • 2020
  • The baseball elimination problem(BEP) is eliminates teams that finishes the season in the early stage without play the remaining games because of the team never most wins even though all wins of remaining games. This problem solved by max-flow/min-cut theorem. But the max-flow/min-cut method has a shortcoming of iterative constructs the network for all of team and decides the min-cut for each network. This paper suggests ascending sort in wins game plus remaining games for each team, then the candidate eliminating team set K with lower 1/2 rank and most easy, simple, and fast computes the existence or not of subset R that a team elimination decision. As a result of various experimental data, this algorithm can be find all of elimination teams for whole data with fast and correct.

CODES BASED ON RESIDUATED LATTICES

  • Atamewoue, Tsafack Surdive;Jun, Young Bae;Lele, Celestin;Ndjeya, Selestin;Song, Seok-Zun
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.1
    • /
    • pp.27-40
    • /
    • 2016
  • We define the notion of a residuated lattice valued function on a set as Jun and Song have done in BCK-algebras. We also investigate related properties of residuated lattice valued function. We establish the codes generated by residuated lattice valued function and conversely we give residuated lattice valued function and residuated lattice obtained by the giving binary block-code.

3D Mesh Creation using 2D Delaunay Triangulation of 3D Point Clouds (2차원 딜로니 삼각화를 이용한 3차원 메시 생성)

  • Choi, Ji-Hoon;Yoon, Jong-Hyun;Park, Jong-Seung
    • Journal of the Korea Computer Graphics Society
    • /
    • v.13 no.4
    • /
    • pp.21-27
    • /
    • 2007
  • The 3D Delaunay triangulation is the most widely used method for the mesh creation via the triangulation of a 3D point cloud. However, the method involves a heavy computational cost and, hence, in many interactive applications, it is not appropriate for surface triangulation. In this paper, we propose an efficient triangulation method to create a surface mesh from a 3D point cloud. We divide a set of object points into multiple subsets and apply the 2D Delaunay triangulation to each subset. A given 3D point cloud is cut into slices with respect to the OBB(Oriented Bounding Box) of the point set. The 2D Delaunay triangulation is applied to each subset producing a partial triangulation. The sum of the partial triangulations constitutes the global mesh. As a postprocessing process, we eliminate false edges introduced in the split steps of the triangulation and improve the results. The proposed method can be effectively applied to various image-based modeling applications.

  • PDF

Hydrocephalus: Ventricular Volume Quantification Using Three-Dimensional Brain CT Data and Semiautomatic Three-Dimensional Threshold-Based Segmentation Approach

  • Hyun Woo Goo
    • Korean Journal of Radiology
    • /
    • v.22 no.3
    • /
    • pp.435-441
    • /
    • 2021
  • Objective: To evaluate the usefulness of the ventricular volume percentage quantified using three-dimensional (3D) brain computed tomography (CT) data for interpreting serial changes in hydrocephalus. Materials and Methods: Intracranial and ventricular volumes were quantified using the semiautomatic 3D threshold-based segmentation approach for 113 brain CT examinations (age at brain CT examination ≤ 18 years) in 38 patients with hydrocephalus. Changes in ventricular volume percentage were calculated using 75 serial brain CT pairs (time interval 173.6 ± 234.9 days) and compared with the conventional assessment of changes in hydrocephalus (increased, unchanged, or decreased). A cut-off value for the diagnosis of no change in hydrocephalus was calculated using receiver operating characteristic curve analysis. The reproducibility of the volumetric measurements was assessed using the intraclass correlation coefficient on a subset of 20 brain CT examinations. Results: Mean intracranial volume, ventricular volume, and ventricular volume percentage were 1284.6 ± 297.1 cm3, 249.0 ± 150.8 cm3, and 19.9 ± 12.8%, respectively. The volumetric measurements were highly reproducible (intraclass correlation coefficient = 1.0). Serial changes (0.8 ± 0.6%) in ventricular volume percentage in the unchanged group (n = 28) were significantly smaller than those in the increased and decreased groups (6.8 ± 4.3% and 5.6 ± 4.2%, respectively; p = 0.001 and p < 0.001, respectively; n = 11 and n = 36, respectively). The ventricular volume percentage was an excellent parameter for evaluating the degree of hydrocephalus (area under the receiver operating characteristic curve = 0.975; 95% confidence interval, 0.948-1.000; p < 0.001). With a cut-off value of 2.4%, the diagnosis of unchanged hydrocephalus could be made with 83.0% sensitivity and 100.0% specificity. Conclusion: The ventricular volume percentage quantified using 3D brain CT data is useful for interpreting serial changes in hydrocephalus.

Fuzzy discretization with spatial distribution of data and Its application to feature selection (데이터의 공간적 분포를 고려한 퍼지 이산화와 특징선택에의 응용)

  • Son, Chang-Sik;Shin, A-Mi;Lee, In-Hee;Park, Hee-Joon;Park, Hyoung-Seob;Kim, Yoon-Nyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.2
    • /
    • pp.165-172
    • /
    • 2010
  • In clinical data minig, choosing the optimal subset of features is such important, not only to reduce the computational complexity but also to improve the usefulness of the model constructed from the given data. Moreover the threshold values (i.e., cut-off points) of selected features are used in a clinical decision criteria of experts for differential diagnosis of diseases. In this paper, we propose a fuzzy discretization approach, which is evaluated by measuring the degree of separation of redundant attribute values in overlapping region, based on spatial distribution of data with continuous attributes. The weighted average of the redundant attribute values is then used to determine the threshold value for each feature and rough set theory is utilized to select a subset of relevant features from the overall features. To verify the validity of the proposed method, we compared experimental results, which applied to classification problem using 668 patients with a chief complaint of dyspnea, based on three discretization methods (i.e., equal-width, equal-frequency, and entropy-based) and proposed discretization method. From the experimental results, we confirm that the discretization methods with fuzzy partition give better results in two evaluation measures, average classification accuracy and G-mean, than those with hard partition.

The Evaluation of Images with Various Filters in I-131 SPECT/CT (I-131 SPECT/CT에서 Ringing Artifact 감소를 위한 다양한 Filter값의 적용)

  • Kim, Ha Gyun;Kim, Soo Mee;Woo, Jae Ryong;Oh, So Won;Lee, Jae Sung;Kim, Yu Kyeong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.62-68
    • /
    • 2014
  • Purpose: After I-131 therapy, SPECT/CT is useful in identifying location of thyroid remnants and metastasis of thyroid cancers. An excessive uptake of thyroid leads to a ringing artifact in the SPECT images. The aim of this study is to investigate and suggest a proper post filters to remove ringing artifact and produce better image quality. Materials and Methods: A low-cost, customized thyroid-mimicking phantom, consisting of an acrylic bottle and a hollow sphere was used for SPECT/CT Discovery (GE Healthcare, USA). It was filled with I-131 solution. The ratio of hollow sphere to background were varied as 50:1, 200:1, 1000:1 and 4000:1. Acquired images were reconstructed by OSEM (2 iterations, 10 subsets) with and without Evolution (resolution recovery correction, GE). Three different post-filters were applied; Butterworth (cut off: 0.38 to 0.58 with intervals of 0.05), Hanning (cut off: 0.8 to 1 with intervals of 0.05) and Gaussian (FWHM: 3 to 5 with intervals of 0.5) filters. Contrast, background variability, air area variability, and full width half maximum (FWHM) were compared. Results: Higher contrasts were obtained from the SPECT images with Evolution than without Evolution. In the case of images without Evolution, image distortion such as star artifact was generated. For all sphere-to-background ratio, the Butterworth filter showed better constrasts and FWHMs than other two filters, but the ringing artifact was still generated in all studies except 50:1 and it was decreased as cutoff value was increased. The ringing artifact didn't appear with Hanning and Gaussian filters at all studies, however constrats and FWHMs with Gaussian was worse than Hanning filter. For the images having ringing artifacts, the background variability and air area variability were increased. Conclusion: In this study, we suggested that it is desirable to use Hanning filter when the ringing artifact is generated and to use Butterworth filter when ringing artifact is not generated in I-131 SPECT.

  • PDF

Computed Tomography-Based Ventricular Volumes and Morphometric Parameters for Deciding the Treatment Strategy in Children with a Hypoplastic Left Ventricle: Preliminary Results

  • Goo, Hyun Woo;Park, Sang-Hyub
    • Korean Journal of Radiology
    • /
    • v.19 no.6
    • /
    • pp.1042-1052
    • /
    • 2018
  • Objective: To determine the utility of computed tomography (CT) ventricular volumes and morphometric parameters for deciding the treatment strategy in children with a hypoplastic left ventricle (LV). Materials and Methods: Ninety-four consecutive children were included in this study and divided into small LV single ventricle repair (SVR) (n = 28), small LV biventricular repair (BVR) (n = 6), disease-matched control (n = 19), and control (n = 41) groups. The CT-based indexed LV volumes, LV-to-right-ventricular (LV/RV) volume ratio, left-to-right atrioventricular valve (AVV) area ratio, left-to-right AVV diameter ratio, and LV/RV long dimension ratio were compared between groups. Proportions of preferred SVR in the small LV SVR group suggested by the parameters were evaluated. Results: Indexed LV end-systolic (ES) and end-diastolic (ED) volumes in the small LV SVR group ($6.3{\pm}4.0mL/m^2$ and $14.4{\pm}10.2mL/m^2$, respectively) were significantly smaller than those in the disease-matched control group ($16.0{\pm}4.7mL/m^2$ and $37.7{\pm}12.0mL/m^2$, respectively; p < 0.001) and the control group ($16.0{\pm}5.5mL/m^2$ and $46.3{\pm}10.8mL/m^2$, respectively; p < 0.001). These volumes were $8.3{\pm}2.4mL/m^2$ and $21.4{\pm}5.3mL/m^2$, respectively, in the small LV BVR group. ES and ED indexed LV volumes of < $7mL/m^2$ and < $17mL/m^2$, LV/RV volume ratios of < 0.22 and < 0.25, AVV area ratios of < 0.33 and < 0.24, and AVV diameter ratios of < 0.52 and < 0.46, respectively, enabled the differentiation of a subset of patients in the small LV SVR group from those in the two control groups. One patient in the small LV biventricular group died after BVR, indicating that this patient might not have been a good candidate based on the suggested cut-off values. Conclusion: CT-based ventricular volumes and morphometric parameters can suggest cut-off values for SVR in children with a hypoplastic LV.