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CODES BASED ON RESIDUATED LATTICES

Tsafack Surdive Atamewoue, Young Bae Jun, Celestin Lele,

Selestin Ndjeya, and Seok-Zun Song

Abstract. We define the notion of a residuated lattice valued function
on a set as Jun and Song have done in BCK-algebras. We also investigate
related properties of residuated lattice valued function. We establish the
codes generated by residuated lattice valued function and conversely we

give residuated lattice valued function and residuated lattice obtained by
the giving binary block-code.

1. Introduction

Residuation is a fundamental concept of ordered structures. In this note, we
consider the consequences of adding a residuated monoid operation to lattice.
The residuated lattices have been studied in several brances of mathematics. In
computer science, a block code is a type of channel coding. It adds redundancy
to a message so that, at the receiver, one can decode with minimal errors,
provided that the information rate would not exceed the channel capacity. The
main characterization of a block code is that it is a fixed length channel code.
Typically, a block code takes k-digit information word, and transforms this into
n-digit codeword. Block coding is the primary type of channel coding used in
earlier mobile communication systems. A block code is a code which encodes
strings formed an alphabet set A into code words by encoding each letter of A
separately. One of the recent applications of BCK-algebras was given in the
coding theory. In coding theory, a block code is an error-correcting code which
encode data in blocks. In 2011, Jun and Song [3] studied codes based on BCK-
algebras. They constructed a finite binary block-code associated to a finite
BCK-algebra, and at the end of the paper they put the question if the converse
of this statement is also true. Flaut [2] prove that, in some circumstances,
the converse of the above statement is also true. Borumand Saeid et al. [4]
presented new connections between BCK-algebras and binary block codes.

In this paper, we first introduce the notion of residuated lattice valued func-
tions and investigate several properties. We establish block-codes by using
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the notion of residuated lattice valued functions. We show that every finite
residuated lattice determines a block-code.

2. Preliminaries

A residuated lattice, (in short RL) is an algebra (A,∧,∨,⊙,→, 0, 1) of type
(2, 2, 2, 2, 0, 0), equipped with an order ≤ satisfying the following conditions:

(I) (A,∧,∨, 0, 1) is a bounded lattice,
(II) (A,⊙, 1) is a commutative ordered monoid,
(III) ⊙ and → form an adjoint pair, i.e., c ≤ a → b if and only if a⊙ c ≤ b

for all a, b, c ∈ A.

The relation between the pair of operations ⊙ and → expressed by (III), is
a particular case of the law of residuation, or Galois correspondence (see [5])
and for every x, y ∈ A, x → y = sup{z ∈ A : x⊙ z ≤ y}.

Any residuated lattices A satisfies the following axioms for all x, y, z ∈ A

(a1) 1 → x = x, x → x = 1, x → 1 = 1,
(a2) x ≤ y if and only if x → y = 1,
(a3) x → y ≤ (z → x) → (z → y),
(a4) x → y ≤ (y → z) → (x → z),
(a5) x ≤ y ⇒ z → x ≤ z → y, y → z ≤ x → z.

3. RL-valued functions

In what follows, let X and A denote a nonempty set and a residuated lattice,
respectively, unless otherwise specified.

Definition 3.1. A mapping ˜f : X → A is called a residuated lattice valued

function (briefly, RL-function) on X .

Definition 3.2. A cut function of ˜f , for a ∈ A, is defined to be a mapping
˜fa : X → {0, 1}, such that (∀x ∈ X) ( ˜fa(x) = 1 ⇔ a → ˜f(x) = 1).

Remark 3.3. (i) ˜fa is the characteristic function of the following subset of X ,

called a cut subset or an a-cut of ˜f : Xa := {x ∈ X | a → ˜f(x) = 1}.

(ii) X0 = X and X1 = {x ∈ X | ˜f(x) = 1}.

Example 3.4. Let X = {x, y, z} and A = {0, a, b, c, 1} with 0 < a, b < c <

1, but a, b are incomparable. Then A is a residuated lattice relative to the
following operations:

→ 0 a b c 1
0 1 1 1 1 1
a b 1 b 1 1
b a a 1 1 1
c 0 a b 1 1
1 0 a b c 1

⊙ 0 a b c 1
0 0 0 0 0 0
a 0 a 0 a a

b 0 0 b b b

c 0 a b c c

1 0 a b c 1
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Consider an RL-function ˜f on X as follows:

˜f : X → A, u 7→







a if u = x,
b if u = y,
c if u = z.

Then its cut subsets are

X0 = X, Xa = {x, z}, Xb = {y, z}, Xc = {z}, X1 = ∅.

Proposition 3.1. Every RL-function ˜f : X → A on X is represented by the

supremum of the set {a ∈ A | ˜fa(x) = 1}, that is,

(∀x ∈ X)
(

˜f(x) = sup{a ∈ A | ˜fa(x) = 1}
)

.(1)

Proof. For any x ∈ X , let ˜f(x) = r ∈ A. Then r → ˜f(x) = r → r = 1, and so
˜fr(x) = 1, i.e., r ∈ {a ∈ A | ˜fa(x) = 1}. Let a ∈ A be such that ˜fa(x) = 1.

Then 1 = a → ˜f(x) = a → r, and thus a ≤ r. Hence r = sup{a ∈ A | ˜fa(x) =

1}. Therefore ˜f(x) = sup{a ∈ A | ˜fa(x) = 1}). �

Proposition 3.2. If ˜f : X → A is an RL-function on X, then

(∀x ∈ X)
(

˜f(x) = sup{a 7→ ˜fa(x) | a ∈ A}
)

,(2)

where a 7→ ˜fa(x) =

{

a ˜fa(x) = 1,
0 otherwise.

Proof. For any x ∈ X , let ˜f(x) = r. Then r → ˜f(x) = 1, and thus ˜fr(x) = 1.

Hence r 7→ ˜fr(x) ∈ {a 7→ ˜fa(x) | a ∈ A}. Let a 7→ ˜fa(x) ∈ A be such that
a ∈ A. Then

(a 7→ ˜fa(x)) → r =

{

a → r = a → ˜f(x) = 1, if ˜fa(x) = 1;

0 → r = 1, if ˜fa(x) = 0.

Thus (a 7→ ˜fa(x)) → r = 1, and so (a 7→ ˜fa(x)) ≤ r. Since

r = r 7→ ˜fr(x) ∈ {a 7→ ˜fa(x) | a ∈ A},

it follows that ˜f(x) = r = sup{a 7→ ˜fa(x) | a ∈ A}. �

Proposition 3.3. Let ˜f : X → A be an RL-function on X. Then

(∀a, b ∈ A) (a → b = 1 ⇒ Xb ⊆ Xa) .

Proof. Let a, b ∈ A be such that a → b = 1. Let x ∈ Xb. Then b → ˜f(x) = 1,

and so b ≤ ˜f(x). It follows from (a5) that a → b ≤ a → ˜f(x), and so that

a → ˜f(x) = 1 → (a → ˜f(x)) = (a → b) → (a → ˜f(x)) = 1.

Therefore x ∈ Xa, which shows that Xb ⊆ Xa. �

Proposition 3.4. Let ˜f : X → A be an RL-function on X. Then
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(i) (∀x, y ∈ X)
(

˜f(x) 6= ˜f(y) ⇔ X
f̃(x) 6= X

f̃(y)

)

.

(ii) (∀a ∈ A) (∀x ∈ X)
(

a → ˜f(x) = 1 ⇔ X
f̃(x) ⊆ Xa

)

.

Proof. (i) If ˜f(x) 6= ˜f(y) for all x, y ∈ X , then ˜f(x) → ˜f(y) 6= 1 or ˜f(y) →
˜f(x) 6= 1. Hence

X
f̃(x) = {z ∈ X | ˜f(x) → ˜f(z) = 1} 6= {z ∈ X | ˜f(y) → ˜f(z) = 1} = X

f̃(y).

Conversely, let x, y ∈ X be such that X
f̃(x) 6= X

f̃(y). Assume that ˜f(x) =

˜f(y). If z ∈ X
f̃(x), then

1 = ˜f(x) → ˜f(z) = ˜f(y) → ˜f(z)

and so z ∈ X
f̃(y). Thus X

f̃(x) ⊆ X
f̃(y). Similarly, X

f̃(y) ⊆ X
f̃(x). This is a

contradiction. Therefore ˜f(x) 6= ˜f(y).

(ii) Let a ∈ A and x ∈ X be such that a → ˜f(x) = 1. Then X
f̃(x) ⊆ Xa by

Proposition 3.3.

Conversely, let a ∈ A and x ∈ X be such that X
f̃(x) ⊆ Xa. If a → ˜f(x) 6= 1,

then x /∈ Xa. The identity ˜f(x) → ˜f(x) = 1 implies x ∈ X
f̃(x). Hence X

f̃(x) is

not include in Xa, which is a contradiction. Therefore a → ˜f(x) = 1. �

Corollary 3.5. Let ˜f : X → A be an RL-function on X. Then

(∀x, y ∈ A)
(

˜f(x) → ˜f(y) = 1 ⇔ X
f̃(y) ⊆ X

f̃(x)

)

.

Proof. It is straightforward by Proposition 3.4(ii). �

For an RL-function ˜f : X → A on X , consider the following sets:

XA := {Xa | a ∈ A} and ˜fA := { ˜fa | a ∈ A}.

Proposition 3.6. Let ˜f : X → A be an RL-function on X. Then

(∀B ⊆ A)
(

Xsup{b|b∈B} =
⋂

{Xb | b ∈ B}
)

.

Proof. Note that there exists the supermum of B in A for any B ⊆ A. We have

x ∈ Xsup{b|b∈B} ⇒ sup{b | b ∈ B} → ˜f(x) = 1

⇒ (∀b ∈ B)(b → ˜f(x) = 1)

⇒ (∀b ∈ B)(x ∈ Xb)

⇒ x ∈
⋂

{Xb | b ∈ B}.

Thus Xsup{b|b∈B} ⊆
⋂

{Xb | b ∈ B}. Also, we have

x ∈
⋂

{Xb | b ∈ B} ⇒ (∀b ∈ B)(x ∈ Xb)

⇒ (∀b ∈ B)(b → ˜f(x) = 1)
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⇒ (∀b ∈ B)(b ≤ ˜f(x))

⇒ sup{b | b ∈ B} ≤ ˜f(x)

⇒ sup{b | b ∈ B} → ˜f(x) = 1

⇒ x ∈ Xsup{b|b∈B}.

Thus
⋂

{Xb | b ∈ B} ⊆ Xsup{b|b∈B}. This completes the proof. �

Corollary 3.7. Let ˜f : X → A be an RL-function on X. Then

(∀a, b ∈ A) (Xa ∩Xb ∈ XA) .

Proof. Note that for any a, b ∈ A, there exists sup{a, b} in A. By Proposition
3.6,

Xsup{a,b} =
⋂

{Xt | t ∈ {a, b}} = Xa ∩Xb.

Since Xsup{a,b} ∈ XA, it follows that Xa ∩Xb ∈ XA. �

Proposition 3.8. Let ˜f : X → A be an RL-function on X. Then
⋃

{Xa | a ∈ A} = X.

Proof. Note that
⋃

{Xa | a ∈ A} = X0 ∪ {Xa | a ∈ A \ {0}}. Since Xa ⊆ X

for all a ∈ A \ {0}, it follow that X0 ∪ {Xa|a ∈ A \ {0}} = X , that is,
⋃

{Xa | a ∈ A} = X . �

Proposition 3.9. Let ˜f : X → A be an RL-function on X. Then

(∀x ∈ X) (
⋂

{Xa | x ∈ Xa} ∈ XA).

Proof. For any x ∈ X , we know that x ∈ Xa implies a → ˜f(x) = 1. Let

B = {a ∈ A | ˜fa(x) = 1}.

Then B ⊆ A, and so
⋂

{Xa | x ∈ Xa} =
⋂

{Xa | ˜fa(x) = 1} = Xsup{a∈A|f̃a(x)=1} ∈ XA

by Proposition 3.6. �

Let ˜f : X → A be an RL-function on X and let ∼ be a binary relation on
A defined by

(∀a, b ∈ A) (a ∼ b ⇔ Xa = Xb).

Remark 3.5. The binary relation ∼ is an equivalence relation on A.

Consider the sets

˜f(X) := {a ∈ A | ˜f(x) = a for some x ∈ X}

and [a) := {x ∈ A | a → x = 1} for a ∈ A.
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Proposition 3.10. For an RL-function ˜f : X → A on X, we have

(∀a, b ∈ A)
(

a ∼ b ⇔ [a) ∩ ˜f(X) = [b) ∩ ˜f(X)
)

.

Proof. For any a, b ∈ A, we have

a ∼ b ⇔ Xa = Xb

⇔ (∀x ∈ X)
(

a → ˜f(x) = 1 ⇔ b → ˜f(x) = 1
)

⇔ {x ∈ X | ˜f(x) ∈ [a)} = {x ∈ X | ˜f(x) ∈ [b)}

⇔ [a) ∩ ˜f(X) = [b) ∩ ˜f(X).

This completes the proof. �

4. Codes generated by RL-functions

For any x ∈ A, let x/ ∼ denote the equivalence class containing x, that is,

x/ ∼:= {y ∈ A | x ∼ y}.

Lemma 4.1. Let ˜f : X → A be an RL-function on X. For every x ∈ X, we

have ˜f(x) = sup{ ˜f(x)/ ∼}, that is, ˜f(x) is the greatest element of the ∼-class

to which it belongs.

Proof. We have

˜f(x) = sup{a ∈ A | ˜fa(x) = 1}

= sup{a ∈ A | a → ˜f(x) = 1}

= sup{a ∈ A | a ∈ ˜f(x)/ ∼}

= sup{ ˜f(x)/ ∼}.

This completes the proof. �

Construction of the code: LetX = {1, 2, . . . , n} and A be a finite residuated

lattice. Every RL-function ˜f : X → A on X determines a binary block-code C
of length n in the following way:

To every a/ ∼, where a ∈ A, there corresponds a codeword ca = a1a2 · · ·an
such that

ai = j ⇔ ˜fa(i) = j

for i ∈ A and j ∈ {0, 1}. It is clear that C is a binary block-code of length
n. Let ca = a1a2 · · · an and cb = b1b2 · · · bn be two codewords belonging to
a binary block-code C. Define an order relation ≤c on the set of codewords
belonging to a binary block-code C as follows:

ca ≤c cb ⇔ bi ≤ ai for i = 1, 2, . . . , n.
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Example 4.1. Let A be the residuate lattice with the universe {0, a, b, c, d, 1}
such that 0 < a, b < c < 1 and 0 < b < d < 1, but a and b are incomparable,
and c and d are incomparable. The operations of implication and multiplication
are given by the tables below:

→ 0 a b c d 1
0 1 1 1 1 1 1
a d 1 d 1 d 1
b c c 1 1 1 1
c b c d 1 d 1
d a a c c 1 1
1 0 a b c d 1

⊙ 0 a b c d 1
0 0 0 0 0 0 0
a 0 a 0 a 0 a

b 0 0 0 0 b b

c 0 a 0 a b c

d 0 0 b b d d

1 0 a b c d 1

Let ˜f : A → A be an RL-function on A given by

˜f =

(

0 a b c d 1
0 a b c d 1

)

.

Then

˜fx 0 a b c d 1
0 1 1 1 1 1 1
a 0 1 0 1 0 1
b 0 0 1 1 1 1
c 0 0 0 1 0 1
d 0 0 0 0 1 1
1 0 0 0 0 0 1

Thus C = {111111, 010101, 001111, 000101, 000011, 000001}.
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Figure 1. Partial ordering ≤, Order relation ≤c

Example 4.2. Let A := {0, a, b, c, d, e, f, g, 1} be a set with 0 < a < b < e <

1, 0 < c < f < g < 1, a < d < g, c < d < e, but {a, c}, {b, d}, {d, f}, {b, f}
and {e, g}, respectively, are incomparable. We define operations ⊙ and → on
A by the Cayley tables (see Table 1 and Table 2). Then A is a residuated
lattice (see [1]). For a set X = {x1, x2, x3, x4, x5, x6, x7, x8, x9}, consider an
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RL-function ˜f on X as follows:

˜f : X → A, u 7→























































1 if u = x1,
g if u = x2,
f if u = x3,
e if u = x4,
d if u = x5,
c if u = x6,
b if u = x7,
a if u = x8,
0 if u = x9.

Table 1. Cayley table for the “⊙”-operation

⊙ 0 a b c d e f g 1
0 0 0 0 0 0 0 0 0 0
a 0 0 a 0 0 a 0 0 a

b 0 a b 0 a b 0 a b

c 0 0 0 0 0 0 c c c

d 0 0 a 0 0 a c c d

e 0 a b 0 a b c d e

f 0 0 0 c c c f f f

g 0 0 a c c d f f g

1 0 a b c d e f g 1

Table 2. Cayley table for the “→”-operation

→ 0 a b c d e f g 1
0 1 1 1 1 1 1 1 1 1
a g 1 1 g 1 1 g 1 1
b f g 1 f g 1 f g 1
c e e e 1 1 1 1 1 1
d d e e g 1 1 g 1 1
e c d e f g 1 f g 1
f b b b e e e 1 1 1
g a b b d e e g 1 1
1 0 a b c d e f g 1
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Then
x1 x2 x3 x4 x5 x6 x7 x8 x9

1 g f e d c b a 0
˜f0 1 1 1 1 1 1 1 1 1
˜fa 1 1 0 1 1 0 1 1 0
˜fb 1 0 0 1 0 0 1 0 0
˜fc 1 1 1 1 1 1 0 0 0
˜fd 1 1 0 1 1 0 0 0 0
˜fe 1 0 0 1 0 0 0 0 0
˜ff 1 1 1 0 0 0 0 0 0
˜fg 1 1 0 0 0 0 0 0 0
˜f1 1 0 0 0 0 0 0 0 0

Hence

C = {111111111, 110110110, 100100100, 111111000, 110110000,

100100000, 111000000, 110000000, 100000000}

and

t
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Figure 2. Partial ordering ≤, Order relation ≤c

Generally, we have the following theorem.

Theorem 4.2. Every finite residuated lattice A determines a block-code C such

that (A,≤) is isomorphic to (C,≤c).

Proof. Let A = {a1, a2, . . . , an} be a finite residuated lattice in which a1 = 0

and an = 1 and let ˜f : A → A be the identity RL-function on A. The

decomposition of ˜f provides a family { ˜fa | a ∈ A} which is the desired code

under the order ≤c. Let g : A → { ˜fa | a ∈ A} be a function defined by

g(a) = ˜fa for all a ∈ A. By Lemma 4.1, every ∼-class contains exactly one
element. Hence g is one-to-one. Let a, b ∈ A be such that a → b = 1, i.e., a ≤ b.

Then Xb ⊆ Xa by Proposition 3.3, which means that ˜fa ≤ ˜fb. Therefore g is
an isomorphism. �
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Definition 4.3. Let (A,≤, 0, 1) be a finite partially ordered set, which is
bounded.

We define the following binary relation ”→” on A as follows:

x = 1 → x and x → (y → z) = y → (x → z)

for all x, y, z ∈ A.
We define the operation ⊙, such that (⊙,→) forms an adjoint pair, i.e.,

z ≤ x → y if and only if x⊙ z ≤ y.

Proposition 4.3 ([5]). With the above operations on A, the lattice (A, ∧, ∨,
⊙, →, 0, 1) is a residuated lattice.

Let C be a binary block-code with n codewords of length n. We consider
the matrix MC = (mij)i,j∈{1,2,...,n} ∈ Mn({0, 1}) with the rows consisting of
the codeword of C. This matrix is called the matrix associated to the code C.

Proposition 4.4. With the above notations, if the codeword 11 · · ·1
︸ ︷︷ ︸

n-times

is in C

and the matrix MC is upper triangular with mii = 1 for all i ∈ {1, 2, . . . , n},
there are a set X with n elements, a residuated lattice A and an RL-function
˜f : X → A on X such that ˜f determines C.

Proof. We consider the lexicographic order, denote by ≤lex, on C. It is clear
that (C,≤lex) is a totally ordered set. Let C = {w1, w2, . . . , wn}, with w1 ≤lex

w2 ≤lex · · · ≤lex wn. This implies that w1 = 11 · · ·1
︸ ︷︷ ︸

n-times

and wn = 00 · · ·0
︸ ︷︷ ︸

(n − 1)-times

1.

On C, we define a partial order ≤c as in construction of the code by the
RL-function. Now, (C,≤c) is a partially ordered set with w1 ≤c wi ≤c wn,
i ∈ {1, 2, . . . , n}. We remark that w1 correspond to 0 and wn correspond to 1 in
A. Hence (C;≤c, 0, 1) is a bounded lattice. We define on (C;≤c, 0, 1) a binary
relation → and the operation ⊙ as Definition 4.3. Then A = (C;≤c, 0, 1,→,⊙)
is a residuated lattice and C is isomorphic to A. We consider X = C and the

identity map ˜f : X → A, w 7→ w, as an RL-function on X . The decomposition

of ˜f provides a family

CA = { ˜fr : X → {0, 1} | ˜fr(x) = 1 ⇔ r → ˜f(x) = 1, ∀x ∈ X, r ∈ A}.

This family is the binary block-code C relative to the order relation ≤c. �

Proposition 4.5. Let A = (ai,j)i∈{1,2,...,n},j∈{1,2,...,m} ∈ Mn,m({0, 1}) be a

matrix with rows lexicographic ordered in the descending sense. Starting from

this matrix, we can find a matrix B = (bi,j)i,j∈{1,2,...,q} ∈ Mq({0, 1}), q =
n+m, such that B is an upper triangular matrix, with bii = 1, ∀i ∈ {1, 2, . . . , q}
and A becomes a submatrix of the matrix B.

Proof. We insert in the left side of the matrix A (from the right to the left) the
following n new columns of the form

00 · · · 01
︸ ︷︷ ︸

n

, 00 · · ·10
︸ ︷︷ ︸

n

, . . ., 10 · · ·00
︸ ︷︷ ︸

n

.
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It results a new matrix L with n rows and n+m columns. Now, we insert the
bottom of the matrix L the following m rows:

00 · · · 0
︸ ︷︷ ︸

n

11 · · · 11
︸ ︷︷ ︸

m

, 00 · · · 0
︸ ︷︷ ︸

n+1

11 · · · 1
︸ ︷︷ ︸

m−1

, . . ., 00 · · ·0
︸ ︷︷ ︸

n+m−1

1.

We obtained the desired matrix B. �

Proposition 4.6. With the above notations, we consider C a binary block-

code with n codewords of length m, n 6= m, or a block-code with n codewords

of length n such that the codeword 11 · · · 1
︸ ︷︷ ︸

n-times

is not in C, or a block-code with n

codewords of length n such that the matrix MC is not upper triangular. There

are a natural number q ≥ max{m,n}, a set X with m elements and an RL-

function ˜f : X → Cq, where Cq denote the residuated lattice with q elements,

such that the obtained block-code CCn
contains the block-code C as a subset.

Proof. Let C be a binary block-code, C = {w1, w2, . . . , wn}, with codewords
of length m. We consider the codewords w1, w2, . . . , wn lexicographic ordered,
w1 ≤lex w2 ≤lex · · · ≤lex wn. Let M ∈ Mn,m({0, 1}) be the associated matrix
with the rows w1, w2, . . . , wn in this order. Using Proposition 4.5, we can
extend the matrix M to a square matrix M ′ ∈ Mp({0, 1}), p = m + n; such
that M ′ = (m′

ij)i,j∈{1,2,...,p} is an upper triangular matrix with m′
ii = 1, for

all i ∈ {1, 2, . . . , p}. If the first line of the matrix M ′ is not 11 · · ·1
︸ ︷︷ ︸

p-times

, then we

insert the row 11 · · · 1
︸ ︷︷ ︸

p+1-times

as a first row and the 1 00 · · ·0
︸ ︷︷ ︸

p-times

as a first column. Let

q = p+ 1, applying Proposition 4.4 for the matrix M ′, we obtain a residuated
lattice Cq = {x1, x2, . . . , xq}, with x1 correspond to 0 and xq correspond to 1,
and a binary block-code CCq

. Assuming that the initial column of the matrix
M have in the new matrix M ′ positions ij1 , ij2 , . . ., ijn ∈ {1, 2, . . . , q}, let

A = {xj1 , xj2 , . . . , xjn} ⊆ Cq. The RL-function ˜f : X → Cq is such that
˜f(xji) = xji , i ∈ {1, 2, . . . ,m}, determines the binary-block code Cq such that

C ⊆ CCq
as restriction of the RL-function ˜f : Cq → Cq on X such that

˜f(xi) = xi. �

Remark 4.4. Propositions 4.4, 4.5 and 4.6 generalized Theorems 3.2, 3.8 and
3.9 in [2] to residuated lattices, with the similar proofs.

The study of residuated lattice have been carried out from both logic and
algebraic standpoint. The filter theory plays an important role in studying
residuated lattice. From logic point of view various filters have natural in-
terpretation as various set of provable formulas. Filters are called deductive
systems by Turunen to emphasize the fact that they correspond to sets of
provable formulas and closed with respect to modus ponens.



38 T. S. ATAMEWOUE, Y. B. JUN, C. LELE, S. NDJEYA, AND S. Z. SONG

The following remark shows that certain block code which can be construct
with the residuated lattices is deductive system.

Remark 4.5. Let V be a binary block code with m codewords of length q.
With the above notations, let A be the associated residuated lattice and W =
{0, w1, . . . , wm+q} the associated binary block code which include the code
V (where 1 = wm+q). We consider the code-words (0, w1, w2, . . . , wm+q)
lexicographic ordered, 0 ≥lex w1 ≥lex w2 ≥lex · · · ≥lex wm+q. Let M ∈
Mm+q+1({0, 1}) be the associated matrix with the rows {0, w1, w2, . . . , wm+q}
in this order. With the above notations, we have that the set

F := {wm+1, . . . , wm+q = 1}

is a deductive system in the residuated lattice A.

Definition 4.6. Let (S,≤) be a partially ordered set. For q ∈ S, we define a
mapping Sq : S → {0, 1} such that (∀b ∈ S) (Sq(b) = 1 ⇔ q ≤ b).

A codeword vx = x1x2 · · ·xn of a binary block code C is determine as follow:
xi = j if and only if Sx(i) = j, for i ∈ S and j ∈ {0, 1}.

Example 4.7. Let S = {0, a, b, c, 1}; (0 < a, b < c < 1) (but a and b are
incomparable), be a set with a partial order S showed in left figure.
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Figure 3. Partial ordering ≤, Order relation ≤c

Sx 0 a b c 1
S0 1 1 1 1 1
Sa 0 1 0 1 1
Sb 0 0 1 1 1
Sc 0 0 0 1 1
S1 0 0 0 0 1

and thus the code obtained by the partially order set S is

VS = {11111, 010111, 00111, 00011, 00001}.
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In the following, we will compute binary block-code based on Jun and Song’s
method for a residuated lattice. We show that there is a correspondence be-
tween the ordered relation on a residuated lattice and a partially ordered set.

Example 4.8. Let A = {0, a, b, c, 1} be a residuated lattice with the following
Cayley tables, where 0 < a, b < c < 1 and a, b are incomparable.

→ 0 a b c 1
0 1 1 1 1 1
a b 1 b 1 1
b a a 1 1 1
c 0 a b 1 1
1 0 a b c 1

⊙ 0 a b c 1
0 0 0 0 0 0
a 0 a 0 a a

b 0 0 b b b

c 0 a b c c

1 0 a b c 1
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Figure 4. Partial ordering ≤, Order relation ≤c

Let ˜f : A → A be an RL-function on A given by ˜f =

(

0 a b c 1
0 a b c 1

)

.

Then
˜fx 0 a b c 1
˜f0 1 1 1 1 1
˜fa 0 1 0 1 1
˜fb 0 0 1 1 1
˜fc 0 0 0 1 1
˜f1 0 0 0 0 1

Thus CA = {11111, 01011, 00111, 00011, 00001} is a code obtained by the resid-
uated lattice A.

Remark 4.9. On a finite lattice which is bounded, we can define a residuated
lattice. From the obtained block-codes by the aforesaid methods, it is obvious
that CS = CA.
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