• 제목/요약/키워드: cut and paste geometry

검색결과 4건 처리시간 0.019초

결함이 있는 점집합 곡면의 형상 및 외관 수정 (Shape and Appearance Repair for Incomplete Point Surfaces)

  • 박세연;;신하용
    • 한국CDE학회논문집
    • /
    • 제12권5호
    • /
    • pp.330-343
    • /
    • 2007
  • In this paper, we present a new surface content completion system that can effectively repair both shape and appearance from scanned, incomplete point set inputs. First, geometric holes can be robustly identified from noisy and defective data sets without the need for any normal or orientation information. The geometry and texture information of the holes can then be determined either automatically from the models' context, or manually from users' selection. After identifying the patch that most resembles each hole region, the geometry and texture information can be completed by warping the candidate region and gluing it onto the hole area. The displacement vector field for the exact alignment process is computed by solving a Poisson equation with boundary conditions. Out experiments show that the unified framework, founded upon the techniques of deformable models and PDE modeling, can provide a robust and elegant solution for content completion of defective, complex point surfaces.

Looking at HPM through an Old Chestnut: Sum of the Angles of a Triangle

  • 숙문강
    • 한국수학사학회지
    • /
    • 제26권5_6호
    • /
    • pp.345-353
    • /
    • 2013
  • Some teachers do not regard the computation of the sum of the angles of a triangle by using a cut-and-paste or paper-folding method as providing a proof that the sum of the angles of a triangle is equal to two right angles. Some even think that this way of working is not mathematics but more like an experiment in physics. Some see the method as no better than measurement of the angles by a protractor. The author will examine this issue in the teaching and learning of school geometry and more generally as a specific example from the perspective of HPM (History and Pedagogy of Mathematics).

조기 대수(Early Algebra)의 연구 동향과 접근에 관한 고찰 (Research Trends and Approaches to Early Algebra)

  • 이화영;장경윤
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제20권3호
    • /
    • pp.275-292
    • /
    • 2010
  • 본 연구는 조기대수(Early Algebra)의 연구 동향을 살펴보고, 대수와 관련된 교과의 본질에 대한 탐구를 통하여 조기대수지도에 접근할 수 있는 여러 가지 방법을 논의하였다. 산술과 대수는 형태상 유사하고 대수를 산술의 연장선이라고 보는 관점이 우세하나, 산술과 대수의 근본적인 목적과 기호와 문자의 역할에 있어서 차이가 있다는 인식 또한 제기된다. 또한, 역사적으로 기하가 대수의 출발점이었다는 인식을 할 수 있었다. 본 연구자는 이에 따라 조기대수에 접근할 수 있는 가능성 있는 여러 가지 방향을 도출해 내었다. 조기대수 지도를 위하여 (1) 아동들의 비형식적인 전략을 고려하기 (2) 대수적 관계를 고려한 산술추론하기 (3) 기하적 문제 상황에서 대수추론을 시작하기 (4) 문자와 식의 도구를 제공하기 등을 통하여 조기대수 교육에 접근할 수 있다.

  • PDF

수학 영재 교육 대상 학생의 기하 인지 수준과 증명 정당화 특성 분석 (An Analysis of Justification Process in the Proofs by Mathematically Gifted Elementary Students)

  • 김지영;박만구
    • 한국수학교육학회지시리즈C:초등수학교육
    • /
    • 제14권1호
    • /
    • pp.13-26
    • /
    • 2011
  • 본 연구의 목적은 초등수학 영재 교육 대상 학생들의 기하 인지 수준과 그들이 증명을 전개하는 과정에서 논리적인 정당화의 특성을 분석하고 이를 기반으로 수학 영재 교육을 위한 시사점을 제시하는 것이다. 이를 위하여 서울특별시 A영재교육원에 재학 중인 5, 6학년 학생 18명을 대상으로 그들의 기하 수준을 확인하고 그들이 기하문제를 증명을 하고 설명하는 과정에서 어떤 논리적인 정당화를 해 가는지 분석하였다. 연구 결과 이들은 van Hieles의 기하 사고의 0수준부터 4수준 중에서 대부분 2∼3수준에 있었다. 그리고 증명의 정당화 과정에서 이 영재 교육 대상 학생들은 잘라 붙이기와 수치적 접근을 사용하려는 시도와 이미 선행으로 학습한 내용의 기억을 되살려 사용하는 예가 많았고, 독창적이고 일반적인 증명으로 이끌어가는 데는 어려움을 가지고 있었다. 따라서 초등수학 영재 교육 대상자들을 위한 교육은 이들의 수준에 맞는 보다 정교화된 과제로 이들이 자신들의 증명의 정당화 과정을 인지하면서 보다 창의적이고 연역적 사고의 수준으로 이끌어 줄 필요가 있다.