• 제목/요약/키워드: customer classification

검색결과 286건 처리시간 0.023초

Case based Reasoning System with Two Dimensional Reduction Technique for Customer Classification Model

  • Kim, Kyoung-Jae;Ahn, Hyun-Chul
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2005년도 추계종합학술대회
    • /
    • pp.383-386
    • /
    • 2005
  • This study proposes a case based reasoning system with two dimensional reduction techniques. In this study, vertical and horizontal dimensions of the research data are reduced through hybrid feature and instance selection process using genetic algorithms. We applied the proposed model to customer classification model which utilizes customers' demographic characteristics as inputs to predict their buying behavior for the specific product. Experimental results show that the proposed technique may improve the classification accuracy and outperform various optimized models of typical CBR system.

  • PDF

다수의 결측치가 존재하는 가전업 고객 데이터 활용을 위한 고객분류기법의 개발 (Customer Classification Method for Household Appliances Industries with a Large Number of Incomplete Data)

  • 장영순;서종현
    • 산업공학
    • /
    • 제19권1호
    • /
    • pp.86-96
    • /
    • 2006
  • Some customer data of manufacturing industries have a large number of incomplete data set due to the customer's infrequent purchasing behavior and the limitation of customer profile data gathered from sales representatives. So that, most sophisticated data analysis methods may not be applied directly. This paper proposes a heuristic data analysis method to classify customers in household appliances industries. The proposed PD (percent of difference) method can be used for the discriminant analysis of incomplete customer data with simple mathematical calculations. The method is composed of variable distribution estimation step, PD measure and cluster score evaluation steps, variable impact construction step, and segment assignment step. A real example is also presented.

Kano모델 기반의 물류 서비스 품질속성 분류와 잠재적 고객요구 개선지수 개발 (Development of Kano model based logistics service quality classification and potential customer Satisfaction Improvement index)

  • 조유진;강경식
    • 대한안전경영과학회지
    • /
    • 제19권4호
    • /
    • pp.221-230
    • /
    • 2017
  • Recently, service quality must reflect several demands of customers who show rapid and various changes so as to be compared with the past. So, objective and rapid methods for them are necessary more. For them, first of all, service company must calculate their standard of service quality accurately by measuring service quality exactly. To measure service quality accurately, this researcher collected and analyzed data by survey for customers who are customers of logistics services, grasped potential satisfaction standard(P) by 5 point Likert scale and one survey for accurate classification of quality attributes through weighted customer satisfaction coefficient changing quality attributes by developing the study on Kano model and Timko's customer satisfaction coefficient, and suggested Potential Customer Satisfaction Improvement index(PCSI) for examining the improvement of customer satisfaction so as to utilize them as an index of differentiated and concrete measurement of service quality.

Correlation Analysis of Airline Customer Satisfaction using Random Forest with Deep Neural Network and Support Vector Machine Model

  • Hong, Sang Hoon;Kim, Bumsu;Jung, Yong Gyu
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제12권4호
    • /
    • pp.26-32
    • /
    • 2020
  • There are many airline customer evaluation data, but they are insufficient in terms of predicting customer satisfaction in practice. In particular, they are generally insufficient in case of verification of data value and development of a customer satisfaction prediction model based on customer evaluation data. In this paper, airline customer satisfaction analysis is conducted through an experiment of correlation analysis between customer evaluation data provided by Google's Kaggle. The difference in accuracy varied according to the three types, which are the overall variables, the top 4 and top 8 variables with the highest correlation. To build an airline customer satisfaction prediction model, they are applied to three classification algorithms of Random Forest, SVM, DNN and conduct a classification experiment. They are divided into training data and verification data by 7:3. As a result, the DNN model showed the lowest accuracy at 86.4%, while the SVM model at 89% and the Random Forest model at 95.7% showed the highest accuracy and performance.

Analyzing Online Customer Reviews for the Hotel Classification in Vietnam

  • NGUYEN, Ha Thi Thu;TRAN, Tuan Minh;NGUYEN, Giang Binh
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제8권8호
    • /
    • pp.443-451
    • /
    • 2021
  • The classification standards for hotels in Vietnam are different from many other hotel classification standards in the world. This study aims to analyze customer reviews on the TripAdvisor website to develop a new algorithm for hotel rating that is independent of Vietnam's hotel classification standards. This method can be applied to individual hotels, or hotels of a region or the whole country, while online booking sites only rate individual hotels. Data was crawled from TripAdvisor with 22,287 reviews of 5 cities in Vietnam. This study used a statistical model to analyze the review dataset and build an algorithm to rate hotels according to aspects or hotel overall. The results have less rating deviation when compared to the TripAdvisor system. This study also supports hotel managers to regularly update the status of their hotels using data from customer reviews, from which, managers can strategize long-term solutions to improve the quality of the hotel in all aspects and attract more travelers to Vietnam. Moreover, this method can be developed into an automatic system to rate hotels and update the status of service quality more quickly, thus, saving time and costs.

신경망과 연관규칙을 이용한 구매패턴 분류시스템의 구현 (Implementation of Purchasing Pattern Classification System Using Neural Network and Association Rules)

  • 이종민;정홍;김진상
    • 한국지능시스템학회논문지
    • /
    • 제13권5호
    • /
    • pp.530-538
    • /
    • 2003
  • 최근 마케팅 업계의 동향을 보면 기존 고객 유지에 대한 필요성을 중요시하면서, 타깃 마케팅의 개념에 의한 고객집단의 세분화된 분류와 각각의 세분화된 고객집단에 대한 차별적인 대응이 요구되고 있다. 본 논문에서는 신경망과 연관규칙의 Cumulate 알고리즘을 이용하여 고객집단을 분류하고 고객집단간의 구매패턴을 분류하는 시스템을 구현하였다. 실제 특정 두 집단간의 연관규칙을 조사한 결과 서로 간에 비슷한 연관규칙이 있음을 알 수 있었고, 마케팅 의사결정을 위해 우량/일반 고객집단으로 분류해야 할 필요성이 있음을 밝혔다. 따라서 고객집단의 분류에 있어 예측율의 정확성을 높임으로써 차별적인 마케팅의 효율을 극대화 할 수 있음을 보였다.

엔트로피 점수를 이용한 감성분석 분류알고리즘의 수행도 평가 (Evaluation of Classification Algorithm Performance of Sentiment Analysis Using Entropy Score)

  • 박만희
    • 한국정보통신학회논문지
    • /
    • 제22권9호
    • /
    • pp.1153-1158
    • /
    • 2018
  • 다양한 온라인 고객 평가 및 소셜 미디어 정보는 고객의 의사결정에 영향을 미치기 때문에 기업에게 매우 중요한 정보 출처라고 할 수 있다. 설문 조사를 통해 고객의 다양한 요구와 불만 사항을 파악하는 데는 많은 비용과 시간적인 제약이 발생하고 있다. 온라인 쇼핑몰의 고객 후기 데이터는 제품에 대한 고객들의 감성을 분석할 수 있는 이상적인 자료를 제공하고 있다. 본 연구에서는 삼성과 애플 스마폰에 대한 감성분석을 위해 아마존 쇼핑몰로부터 고객 리뷰 데이터를 수집하였다. 선행 연구에서 대표적인 감성분석 기법으로 사용된 5가지 분류 알고리즘을 적용하였다. 5가지 분류알고리즘은 support vector machines, bagging, random forest, classification or regression tree, maximum entropy 등이다. 본 연구에서는 분류 알고리즘의 수행도를 종합적으로 평가할 수 있는 entropy score를 제안하였다. Entropy score를 이용하여 5가지 알고리즘을 평가한 결과에 따르면 support vector machines 알고리즘의 entropy score가 가장 높은 것으로 분석되었다.

Add-on selling strategies in an online open market

  • Shim, Beomsoo;Lee, Hanjun
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권4호
    • /
    • pp.985-995
    • /
    • 2015
  • Add-on selling can provide new chances to increase sellers' profits and meet customers' needs. Although prior studies have advocated add-on selling for its business value, there is an argument that add-on selling can cause customer repulsion. Therefore, we need to understand customer purchasing pattern related to add-on selling in order to promote it and to mitigate the customer repulsion. To that end, we applied data mining techniques to the 24,925 transactions of data from an online open market in Korea. We then conducted feature selection to investigate the most influential factors that can explain the characteristics of add-on selling transactions using a classification model. We also identified association rules among add-on selling and promotions. Finally, based on the findings in our experiments, we proposed add-on selling strategies for the target online market.

미검침 고객의 가상 부하패턴 생성을 위한 고객 속성 정보를 이용한 고객 분류 기법 (Customer Classification Method Using Customer Attribute Information to Generate the Virtual Load Profile of non-Automatic Meter Reading Customer)

  • 김영일;고종민;송재주;최훈
    • 전기학회논문지
    • /
    • 제59권10호
    • /
    • pp.1712-1717
    • /
    • 2010
  • To analyze the load of distribution line, real LPs (Load Profile) of AMR (Automatic Meter Reading) customers and VLPs (Virtual Load Profile) of non-AMR customers are required. Accuracy of VLP is an important factor to improve the analysis performance. There are 2 kinds of methods to generate the VLP; one is using ALP (Average Load Profile) per each industrial code and PNN (Probability neural networks) algorithm; the other is using LSI (Load Shape Index) and C5.0 algorithm. In this paper, existing researches are studied, and new method is suggested. Each methods are compared the performance with same LP data of real high voltage customers.

텍스트 마이닝을 활용한 고객 리뷰의 유용성 지수 개선에 관한 연구 (A Study on Classifications of Useful Customer Reviews by Applying Text Mining Approach)

  • 이홍주
    • 한국IT서비스학회지
    • /
    • 제14권4호
    • /
    • pp.159-169
    • /
    • 2015
  • Customer reviews are one of the important sources for purchase decision makings in online stores. Online stores have tried to provide useful reviews in product pages to customers. To assess the usefulness of customer reviews before other users have voted enough on the reviews, diverse aspects of reviews were utilized in prevous studies. Style and semantic information were utilized in many studies. This study aims to test diverse alogrithms and datasets for identifying a proper classification method and threshold to classify useful reviews. In particular, most researches utilized ratio type helpfulness index as Amazon.com used. However, there is another type of usefulness index utilized in TripAdviser.com or Yelp.com, count type helpfulness index. There was no proper threshold to classify useful reviews yet for count type helpfulness index. This study used reivews and their usefulness votes on restaurnats from Yelp.com to devise diverse datasets and applied text mining approaches to classify useful reviews. Random Forest, SVM, and GLMNET showed the greater values of accuracy than other approaches.