• Title/Summary/Keyword: cusp-form

Search Result 51, Processing Time 0.027 seconds

Secular Evolution of Nuclear Bulges through Sustained Star Formation

  • Kim, Sung-Soo S.;Saitoh, Takayuki;Jeon, Myoung-Won;Merritt, David;Figer, Donal F.;Wada, Keiich
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.72.1-72.1
    • /
    • 2010
  • Gas materials in the inner Galactic disk continuously migrate toward the Galactic center (GC) due to interactions with the bar potential, magnetic fields, stars, and other gaseous materials. In case of the Milky Way, those in forms of molecules appear to accumulate around 200 pc from the center (the central molecular zone, CMZ) to form stars there and further inside. The bar potential in the GC is thought to be responsible for such acculmulation of molecules and subsequent star formation, which is believed to have been continous throughout the lifetime of the Galaxy. We present 3-D hydrodynamic simulations of the CMZ that consider self-gravity, radiative cooling, and supernova feedback, and discuss the efficiency and role of the star formation in that region. We find that the gas accumulated in the CMZ by a bar potential of the inner bulge effectively turns into stars, supporting the idea that the stellar cusp inside the central 200 pc is a result of the sustained star formation in the CMZ. The obtained star formation rate in the CMZ, 0.03-0.1 Msun, is consistent with the recent estimate based on the mid-infrared observations by Yusef-Zadeh et al. We discuss the secular evolution of nuclear bulges in general, based on our results.

  • PDF

Development of Rotor for Internal Gear Pump using Cycloid and Polycircular-arc Curves (사이클로이드 및 폴리서클 곡선을 이용한 내접형 기어펌프용 치형 개발)

  • Kim, Min-Soo;Lee, Hyun-Woo;Jung, Sung-Yuen;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.9
    • /
    • pp.1003-1011
    • /
    • 2012
  • A new type of gerotor developed in this paper has the inner rotor designed by inserting a polycircular-arc between the hypocycloid and epicycloid curves, and we also suggest that the outer rotor be designed using the closed-form equation for the inner rotor and a method of modification. Thus, it is possible to design a gerotor for which there is no cusp and loop, as in this case undercut is prevented. We developed automated program for rotor design and calculation of the flow rate and flow rate irregularity. And we also demonstrate the superior performance of the gerotor developed in this study by analyzing the internal fluid flow using a commercial computation fluid dynamics-code (CFD).

Vortex pairing in an axisymmetric jet using fundamental and subharmonic forcing (기본교란 및 분수조화교란을 이용한 원형제트에서의 보텍스병합)

  • Jo, Seong-Gwon;Yu, Jeong-Yeol;Choe, Hae-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.10
    • /
    • pp.1350-1362
    • /
    • 1997
  • An experimental study has been performed on vortex pairing under fundamental and subharmonic forcing with controlled initial phase differences through hot-wire measurements and a multi-smoke wire flow visualization. For the range of St$_{D}$ < 0.6, vortex pairing was controlled by means of fundamental and subharmonic forcing with varying initial phase differences. Much larger mixing rate was achieved by two-frequency forcing with a proper phase difference than one frequency forcing. As St$_{D}$ decreased, vortex pairing was limited to a narrow region of the initial phase difference between two disturbances and higher amplitudes of the fundamental and its subharmonic at the nozzle exit were required for more stable pairing. As the amplitude of the subharmonic at the nozzle exit increased for fixed St$_{D}$ and fundamental amplitude, the distribution of the subharmonic mode against the variation of the initial phase difference changed from a sine function form into a cusp-like form. Thus, vortex pairing can be controlled more precisely for the former case. For St$_{D}$ > 0.6, non-pairing advection of vortices due to the improper phase difference was sometimes observed in several fundamental forcing amplitudes when only the fundamental was applied. However, when its subharmonic was added, vortex pairing readily occurred. As the initial amplitude of this subharmonic increased, the position of vortex pairing moved upstream. This was thought to be due to the fact that the variation of the initial phase difference between the fundamental and its subharmonic has less effects on vortex pairing in the region of fundamental-only vortex pairing.pairing.

A STUDY ON THE ANALYSIS OF THE CURVE OF SPEE ON THE GNATHOLOGICAL CAST AND THE CEPHALOMETRIC RADIOGRAPH (악태모형과 측모두부 계측 방사선 사진상 스피만곡 분석에 관한 연구)

  • Choi, Ah-Young;Kim, Jeong-Sun;Kay, Kee-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.36 no.2
    • /
    • pp.323-335
    • /
    • 1998
  • Clinically, the curve of Spee is widely applied as a determined level of the occlusal curvature when the oral rehabilitation and the reconstruction of the prosthesis is needed at the malalignment dentition due to the missing, extrusion, and the inclination of the teeth. The purpose of this study was to analyze the curve of Spee of the occlusal curvature which influences to the occlusal form and the location three dimensionally, and then was to measure the radius and the degree of curvature of the curve of Spee and also was to investigate the influence to the cuspal inclination according to the change of the inclination of the curve of Spee which was analyzed by AutoCAD R.13 program at the gnathological cast and the cephalometric radiograph. The following results were obtained : 1. The radius of the curve of Spee was the mean of $11.74{\pm}3.64cm$ in the model, $12.75{\pm}4.63cm$ in the radiograph and there was no significant difference statistically between the model and the radiograph(P>0.001). 2. The radius and the degree of curvature of the curve of Spee showed negative correlation(r=-0.80), while the radius and the degree of curvature of the curve of Spee in relation to the length of the curve of Spee did not show correlation. 3. The case of the curve of Spee inclined to the posterior, that is. $Post.M{\theta}$ group showed the mean of $4.73{\pm}3.64$, positive correlation to the P2m, M1mm, M1dm, M2dm, and especially the greatest correlation coefficient to the mesial inclination angle of the mesio-buccal cusp tip of the first molar(r=0.70). 4. The case of the curve of Spee inclined to the anterior, that is, $Ant.M{\theta}$ group showed the mean of $3.28{\pm}3.59$, positive correlation to the P2m, M1mm, and also the greatest correlation coefficient to the mesial inclination angle of the mesio-buccal cusp tip of the first molar(r=0.78

  • PDF

FINITE ELEMENT STRESS ANALYSIS OF IMPLANT PROSTHESIS WITH INTERNAL CONNECTION BETWEEN THE IMPLANT AND THE ABUTMENT (임플란트와 지대주간 내측 연결을 갖는 임플란트 보철의 유한요소 응력분석)

  • Ahn, Jong-Kwan;Kay, Kee-Sung;Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.4
    • /
    • pp.356-372
    • /
    • 2004
  • Statement of problom: In the internal connection system the loading transfer mechanism within the inner surface of the implant and also the stress distribution occuring to the mandible can be changed according to the abutment form. Therefore it is thought to be imperative to study the difference of the stress distribution occuring at the mandible according to the abutment form. Purpose: The purpose of this study was to assess the loading distributing characteristics of 3 implant systems with internal connection under vertical and inclined loading using finite element analysis. Material and method: Three finite element models were designed according to the type of internal connection of ITI(model 1), Friadent(model 2), and Bicon(model 3) respectively. This study simulated loads of 200N in a vertical direction (A), a $15^{\circ}$ inward inclined direction (B), and a $30^{\circ}$ outward inclined direction (C). Result: The following results have been made based on this numeric simulations. 1. The greatest stress showed in the loading condition C of the inclined load with outside point from the centric cusp tip. 2. Without regard to the loading condition, the magnitudes of the stresses taken at the supporting bone, the implant fixture, and the abutment were greater in the order of model 2, model 1, and model 3. 3. Without regard to the loading condition, greater stress was concentrated at the cortical bone contacting the upper part of the implant fixture, and lower stress was taken at the cancellous bone. 4. The stress of the implant fixture was usually widely distributed along the inner surface of the implant fixture contacting the abutment post. 5. The stress distribution pattern of the abutment showed that the great stress was usually concentrated at the neck of the abutment and the abutment post, and the stress was also distributed toward the lower part of the abutment post in case of the loading condition B, C of the inclined load. 6. In case of the loading condition B, C of the inclined load, the maximum von Misess stress at the whole was taken at the implant fixture both in the model 1 and model 2, and at the abutment in the model 3. 7. The stress was inclined to be distributed from abutment post to fixture in case of the internal connection system. Conclusion: The internal connection system of the implant and the abutment connection methods, the stress-induced pattern at the supporting bone, the implant fixture, and the abutment according to the abutment connection form had differenence among them, and the stress distribution pattern usually had a widely distributed tendency along the inner surface of the implant fixture contacting the a butment post.

A STUDY ON COMPARISON OF VARIOUS KINDS OF CLASSII AMALGAM CAVITIES USING FINITE ELEMENT METHOD (유한요소법을 이용한 수종 2급 아말감 와동의 비교연구)

  • Seok, Chang-In;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.2
    • /
    • pp.432-461
    • /
    • 1995
  • The basic principles in the design of Class II amalgam cavity preparations have been modified but not changed in essence over the last 90 years. The early essential principle was "extension for prevention". Most of the modifications have served to reduce the extent of preparation and, thus, increase the conservation of sound tooth structure. A more recent concept relating to conservative Class II cavity preparations involves elimination of occlusal preparation if no carious lesion exists in this area. To evaluate the ideal ClassII cavity preparation design, if carious lesion exists only in the interproximal area, three cavity design conditions were studied: Rodda's conventional cavity, simple proximal box cavity and proximal box cavity with retention grooves. In this study, MO amalgam cavity was prepared on maxillary first premolar. Three dimensional finite element models were made by serial photographic method. Linear, eight and six-nodal, isoparametric brick elements were used for the three dimensional finite element model. The periodontal ligament and alveolar bone surrounding the tooth were excluded in these models. Three types model(B option, Gap option and R option model) were developed. B option model was assumed perfect bonding between the restoration and cavty wall. Gap option model(Gap distance: $2{\mu}m$) was assumed the possibility of play at the interface simulated the lack of real bonding between the amalgam and cavity wall (enamel and dentin). R option model was assumed non-connection between the restoration and cavty wall. A load of 500N was applied vertically at the first node from the lingual slope of the buccal cusp tip. This study analysed the displacement, 1 and 2 direction normal stress and strain with FEM software ABAQUS Version 5.2 and hardware IRIS 4D/310 VGX Work-station. The results were as followed. 1. Rodda's cavity form model showed greater amount of displacement with other two models. 2. The stress and strain were increased on the distal marginal ridge and buccopulpal line angle in Rodda's cavity form model. 3. The stress and strain were increased on the central groove and a part of distal marginal ridge in simple proximal box model and proximal box model with retention grooves. 4. With Gap option, Rodda's cavity form model showed the greatest amount of the stress on distal marginal ridge followed by proximal box model with retention grooves and simple proximal box model in descending order. 5. With Gap option, simple proximal box model showed greater amount of stress on the central groove with proximal box model with retention grooves. 6. Retention grooves in the proximal box played the role of supporting the restorations opposing to loads.

  • PDF

Revealing the complexity of ionized gas outflows in powerful Type 2 AGN in the local Universe

  • Karouzos, Marios;Woo, Jong-Hak;Bae, Hyun-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.32.3-33
    • /
    • 2015
  • There exist scaling relations that link the mass of supermassive black holes with both the velocity dispersion and the mass of the central stellar cusp of their host galaxies. This implies that these two components grow in tandem. Feedback from actively accreting supermassive black holes (AGN), in the form of multi-phase gas outflows, has been argued to be the agent of this co-evolution. Here we employ the powerful GMOS integral field spectroscopy unit on the 8.2m Gemini-North telescope to investigate ionized gas outflows of luminous Type 2 AGN in the local Universe (z<0.1). Our sample of 6 galaxies is drawn from the Sloan Digital Sky Survey (SDSS) and was selected based on their [OIII] dust-corrected luminosity (>1042 erg/s) and signatures of outflows in the [OIII] line profile of their spatially integrated SDSS spectra. These are arguably the best candidates to explore AGN feedback in action since they are < 1% of a large local type 2 AGN SDSS sample selected based on their [OIII] kinematics. We combine a careful spectral decomposition of the [OIII] and $H{\alpha}$ line profiles with spatial information on ~0.5kpc scales to understand the outflow kinematics and energetics in these objects. We find clear evidence for strong outflows in [OIII] and occasionally $H{\alpha}$ that are clearly driven by the ionizing radiation of the AGN. We kinematically and spatially decompose outflowing and rotating ionized gas components. We find [OIII] to be a better tracer of AGN outflows, while $H{\alpha}$ appears to be strongly affected by both stellar rotation and outflows induced by ongoing star formation. The observed kinematics and spatial distribution of the ionized gas imply a large opening angle for the outflow. Finally, we find the projected outflow velocity to decrease as a function of distance, while its dispersion shows a more complex structure with a potentially initially increasing trend (out to 0.5-1kpc distances).

  • PDF

Comparison of occlusal contact areas of class I and class II molar relationships at finishing using three-dimensional digital models

  • Lee, Hyejoon;Kim, Minji;Chun, Youn-Sic
    • The korean journal of orthodontics
    • /
    • v.45 no.3
    • /
    • pp.113-120
    • /
    • 2015
  • Objective: This study compared occlusal contact areas of ideally planned set-up and accomplished final models against the initial in class I and II molar relationships at finishing. Methods: Evaluations were performed for 41 post-orthodontic treatment cases, of which 22 were clinically diagnosed as class I and the remainder were diagnosed as full cusp class II. Class I cases had four first premolars extracted, while class II cases had maxillary first premolars extracted. Occlusal contact areas were measured using a three-dimensional scanner and RapidForm 2004. Independent t-tests were used to validate comparison values between class I and II finishings. Repeated measures analysis of variance was used to compare initial, set up, and final models. Results: Molars from cases in the class I finishing for the set-up model showed significantly greater contact areas than those from class II finishing (p < 0.05). The final model class I finishing showed significantly larger contact areas for the second molars (p < 0.05). The first molars of the class I finishing for the final model showed a tendency to have larger contact areas than those of class II finishing, although the difference was not statistically significant (p = 0.078). Conclusions: In set-up models, posterior occlusal contact was better in class I than in class II finishing. In final models, class I finishing tended to have larger occlusal contact areas than class II finishing.

Three-Dimensional Finite Element Analysis of Internal Connection Implant System (Gsii$^{(R)}$) According to Three Different Abutments and Prosthetic Design (국산 내부연결형 임플란트시스템(GS II$^{(R)}$)에서 지대주 연결방식에 따른 응력분석에 관한 연구)

  • Jang, Mi-Ra;Kwak, Ju-Hee;Kim, Myung-Rae;Park, Eun-Jin;Park, Ji-Marn;Kim, Sun-Jong
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.2
    • /
    • pp.179-195
    • /
    • 2010
  • In the internal connection system, the loading transfer mechanism within the inner surface of the implant and also the stress distribution occuring to the mandible can be changed according to the abutment form. Therefore it is thought to be imperative to study the difference of the stress distribution occuring at the mandible according to the abutment form. The purpose of this study was to assess the loading distributing characteristics of three different abutments for GS II$^{(R)}$ implant fixture(Osstem, Korea) under vertical and inclined loading using finite element analysis. Three finite element models were designed according to three abutments; 2-piece Transfer$^{TM}$ abutment made of pure titanium(GST), 2-piece GoldCast$^{TM}$ abutment made of gold alloy(GSG), 3-piece Convertible$^{TM}$ abutment with external connection(GSC). This study simulated loads of 100N in a vertical direction on the central pit(load 1), on the buccal cusp tip(load 2) and $30^{\circ}$ inward inclined direction on the central pit(load 3), and on the buccal cusp tip(load 4). The following results were obtained. 1. Without regard to the loading condition, greater stress was concentrated at the cortical bone contacting the upper part of the implant fixture and lower stress was taken at the cancellous bone. 2. When off-axis loading was applied, high stress concentration observed in cervical area. 3. GSG showed even stress distribution in crown, abutment and fixture. GST showed high stress concentration in fixture and abutment screw. GSC showed high stress concentration in fixture and abutment. 4. Maximum von Mises stress in the surrounding bone had no difference among three abutment type. In GS II$^{(R)}$ conical implant system, different stress distribution pattern was showed according to the abutment type and the stress-induced pattern at the supporting bone according to the abutment type had no difference among them.

An analysis of the dental arch and skeletal characteristics in adult patients exhibiting open bite (Openbite을 나타내는 성인의 치열 특성 및 그에 따른 골격적 특성 분석)

  • Lee, Jin-Woo
    • The korean journal of orthodontics
    • /
    • v.34 no.4 s.105
    • /
    • pp.289-301
    • /
    • 2004
  • It is the purpose of this study to characterize oral symptoms and to comprehend the cause and the relapse possibility of patients with open bite. This case study examines the orthodontic treatment of a group of female patients with open bite and Angle's Class I malocclusion. A cephalograph of the patient was taken and tracing of the radiograph was completed. In addition to Bjork and Ricketts analysis, additional measurements of specific areas were taken. The occlusal plane was determined by drawing a line connecting the mesiobuccal cusp tip of the maxillary first molar and the incisal edge of the maxillary central incisors. Patients were divided into two groups depending on the relationship between the marginal ridge of the maxillayy first premolar and the drawn line. Those patients with marginal ridges above the occlusal plane were placed into Group 1, while Group 2 subjects exhibited marginal ridges lower than the occlusal plane. The common characteristics within each group and the characteristic differences between each group both prior to and after orthodontic treatment were examined, and finally, the functional oral volume of each patient was analyzed. The results of the case study were as follows: 1. An examination of the skeletal relationship and anatomical form for both Group 1 and 2 showed that all subjects exhibited hyperdivergent skeletal forms, but Group 2 subjects generally demonstrated underdevelopment of the mandible and a smaller articular angle, resulting in an anterior positioning tendency of the mandible. 2. An analysis of the maxillary arches of Group 1 subjects prior to and after orthodontic treatment showed that the antero-inferior direction had changed to an antero-superior directional tendency, while the maxillary arches of the Group 2 patients showed a trend from an antero-superior direction to an antero-inferior relationship. The mandibular arches in both groups showed a change to an antero-superior direction. 3. Functional space analysis showed that Group 2 patients exhibited a greater tendency of haying palatal planes that drop in a postero-inferior direction, resulting in a more severe open bite than their Group 1 counterparts. The results of this case study show that although patients belonging to either Group 1 or 2 exhibited few external differences in the appearance of open bite, an examination of the dental and skeletal relationships by analyzing patient cephalographs showed that patients presenting with flat maxillary occlusal planes exhibited more severe open bite relationships than patients with curved occlusal planes.