• Title/Summary/Keyword: cushion device

Search Result 32, Processing Time 0.02 seconds

Development of Vertical Biomechanical Model for Evaluating Ride Quality (승차감 평가를 위한 수직 방향의 인체 진동 모델 개발)

  • 조영건;박세진;윤용산
    • Journal of KSNVE
    • /
    • v.10 no.2
    • /
    • pp.269-279
    • /
    • 2000
  • This paper deals with the development of biomechanical model on a seat with backrest support in the vertical direction. Four kinds of biomechanical models are discussed to depict human motion. One DOF model mainly describes z-axis motion of hip, two and three DOF models describe z-axis of hip and head, and while nine DOF model suggested in this study represents more motion than the otehr model. Three kinds of experiments were executed to validate these models. The first one was to measure the acceleration of the floor and hip surface in z-axis, the back surface in x-axis, and the head in z-axis under exciter. From this measurement, the transmissiblities of each subject were obtained. The second one was the measurement of the joint position by the device having pointer and the measurement of contact position between the human body and the seat by body pressure distribution. The third one was the measurement of the seat and back cushion by dummy. The biomechanical model parameters were obtained by matching the simulated to the experimental transmissiblities at the hip, back, and head.

  • PDF

A Study of A Nonlinear Viscoelastic Model for Elastomeric Bushing in Torsional Mode (일래스토메릭 부싱의 회전방향 모두 비선형 점탄성 모델연구)

  • Lee, Seong-Beom
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.194-200
    • /
    • 1999
  • An elastomeric bushing is a device used in automotive suspension systems to cushion the force transmitted from the wheel to the frame of the vehicle. A bushing is an elastomeric hollow cylinder which is bonded to a solid metal shaft at its inner surface and a metal sleeve at its outer surface. For axial motion case, the relation between the force applied to the shaft and their relative displacement was considered. In this paper, the relation between the moment applied to the shaft and their relative deformation(angle of rotation) is considered for the torsional motion case. Numerical solutions of the boundary value problem represent the exact bushing response for use in the method for determining the moment relaxation function of the bushing. Solutions also allow for comparison between the exact moment-deformation behavior and that predicted the proposed model. It is shown that the predictions of the proposed moment-deformation relation are in very good agreement with the exact results.

  • PDF

Evaluation of measuring accuracy of body position sensor device for posture correction (자세교정을 위한 체위변환 감지 센서 디바이스의 정확성 평가)

  • Choi, Jung-Hyeon;Park, Jun-Ho;Kang, Min-Ho;Seo, Jae-Yong;Kim, Soo-Chan
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.3
    • /
    • pp.128-133
    • /
    • 2021
  • Recently Recently, the incidence of spinal diseases due to poor posture among students and office workers is increasing, and various studies have been conducted to help maintain correct posture. In previous studies, a membrane sensor or a pressure sensor was placed on the seat cushion to see the weight bias, or a sensor that restrained the user was attached to measure the position change. In our previous study, we developed a sensor device which can be easily attached to the body with an adhesive gel sheet and that measures and outputs the user's posture and body position in real time, but it has a limitation in the accuracy of the sensor value. In this study, a study was conducted to improve the performance of the position conversion sensor device and quantitatively evaluate the accuracy of the angle conversion measurement value, and a high accuracy with 2.53% of error rate was confirmed. In future research, it is considered that additional research targeting actual users is needed by diversifying posture correction training contents with multimedia elements added.

Evaluation of the Efficiency of Use of Fixation Instruments in Computed Tomography-Guided Biopsy of Lung Lesions (전산화단층촬영 유도하 폐 병소의 생검시 고정기구 사용의 효용성 평가)

  • Kim, Dae-Guen;Lee, Joo-Ah
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.7
    • /
    • pp.676-683
    • /
    • 2022
  • Minimizing patient movement during CT-guided lung biopsy is an important factor in the procedure. To minimize movement, a vacuum cushion was used to evaluate its effectiveness. The subjects of this study were 116 patients aged 40 years or older who had good coordination with postural fixation and breathing control. Posture measurements were performed in the supine position, prone position, oblique position, and lateral position according to each position of the lung lesion biopsy lesion. Measurement positions were measured in the anterior, posterior, right, and left positions based on the anatomical posture. In the prone position, the mean difference between the non-use and the use of the posterior was 1.7905, and t=2.913 (p<0.01), and the mean difference between the non-use/use was statistically significant. The difference between the unused and used averages of left was 2.4105, and the difference between the left averages was also significant with t=3.684 (p<0.01). The difference between the unused and used averages of the right was 2.3263, with t=3.791 (p<0.01). The mean difference between unused and used is statistically significant. As a result of statistical analysis, the biopsy of the lung lesion using a fixation device showed less movement in all postures. It is considered that it is meaningful in that it is possible to conduct a more accurate biopsy procedure and minimize the patient's posture movement by using a fixation device during the CT-guided biopsy of the lung lesion.

A Study on the Reduction of Organ Motion from Respiration (호흡 운동에 의한 내부 장기의 움직임 감소에 관한 연구)

  • Kim Jae-Gyoun;Lee Dong-Han;Lee Dong-Hoon;Kim Mi-Sook;Cho Chul-Koo;Yoo Seong-Yul;Yang Kwang-Mo;Oh Won-Yong;Ji Young-Hoon
    • Progress in Medical Physics
    • /
    • v.15 no.4
    • /
    • pp.179-185
    • /
    • 2004
  • To deal with tumor motion from respiration is one of the important issues for the advanced treatment techniques, such as the intensity modulated radiation therapy (IMRT), the image guided radiation therapy (IGRT), the three dimensional conformal therapy (3D-CRT) and the Cyber Knife. Studies including the active breath control (ABC) and the gated radiation therapy have been reported. Authors have developed the device for reducing the respiration effects and the diaphragm motions with this device were observed to determined the effectiveness of the device. The device consists of four belts to immobilize diaphragm motion and the vacuum cushion. Diaphragm motions without and with device were monitored fluoroscopically. Diaphragm motion ranges were found to be 1.14 ~ 3.14 cm (average 2.14 cm) without the device and 0.72~1.95 cm (average 1.16 cm) with the device. The motion ranges were decreased 20 ~ 68.4% (average 44.9%.) However, the respiration cycle was increased from 4.4 seconds to 3.7 seconds. The CTV-PTV margin could be decreased significantly with the device developed in this study, which may be applied to the treatments of the tumor sited diaphragm region.

  • PDF

Development of body position sensor device for posture correction training (자세 교정훈련을 위한 체위 변환 감지 센서 디바이스의 개발)

  • Choi, Jung-Hyeon;Park, Jun-Ho;Seo, Jae-Yong;Kim, Soo-Chan
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.2
    • /
    • pp.80-85
    • /
    • 2020
  • Recently the incidence of musculoskeletal disorders in students and office workers is increasing, and the necessity of maintaining correct posture and corrective training is required, but related research is insufficient. In the previous study, a membrane sensor or a pressure sensor was placed on the seat cushion to see the deviation of the body weight, or a sensor that restrained the user was attached to measure the position change. In this study, a sensor device for detecting a position change in consideration of wearing comfort was developed, and the measured angle was verified through an analysis app. A sensor device consisting of an IMU sensor is attached to the cervical spine and vertebra spine to measure the position transformation in the sitting position. The change value of the position measured by the two sensors was converted into an angle, and the angle value is displayed in real time through the analysis app. In this study, the possibility of measuring the real-time change value according to the change in position, the convenience of wearing, and the tendency of angle measurement were proved. Future research should proceed with more precise angle calculation and correction of motion noise.

A Survey on Awareness and Availability on Items of 2018 Assistive Devices Distribution Program for the Disabled in the Occupational Therapists (2018년도 장애인 보조기기 교부사업 품목에 대한 작업치료사의 인식도와 활용도 조사)

  • Kim, Jeong-Eun;Park, Je-Min;Bae, Su-Yeong;Jung, Nam-hae
    • Korean Journal of Occupational Therapy
    • /
    • v.26 no.4
    • /
    • pp.85-95
    • /
    • 2018
  • Objective : The purpose of this study was to investigate the awareness and availability on items of 2018 assistive devices distribution program for the disabled in the occupational therapists. Methods : A total of 132 occupational therapists participated in the survey from May 1 to May 31. Results : 96.2% of the occupational therapists responded that assistive device is helpful in lives of the disabled people. Especially, they responded that assistive device is the most helpful in 'movement and mobility'. Awareness on an angle spoon/fork with built-up handle and universal cuff was the highest, while a visual signaling indicator was the lowest. Availability on an air cushion was the highest, while a visual signaling indicator and a voice guidance system were the lowest. 67.4% responded that 'sometimes' they use the assistive device and 77.3% responded they will utilize the assistive device. To improve awareness and availability, 43.2% needed financial support, 32.6% needed to add insurance bill and 22.7% needed related education. Conclusion : In the future, this result will be available as a basic data for the education about assistive device for the occupational therapists.

A Study of A Nonlinear Viscoelastic Model for Elastomeric Bushing in Automotive Suspension System (I) -Axial Mode- (차량현가장치용 일래스토메릭 부시으이 비선형점탄성 모델연구 (I) -축 방향 모드-)

  • 이성범
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.154-161
    • /
    • 1999
  • An elastomeric bushing is a device used in automotive suspension systems to cushion the force transmitted from the wheel to the frame of the vehicle. A bushing is an elastomeric hollow cylinder which is bonded to a solid metal shaft at its inner surface and a metal sleeve at its outer suface. The relation between the force applied to the shaft or sleeve and their relative deformation is nolinear and exhibits features of viscoelasticity. Numerical solutions of the boundary value problem represent the exact bushing response for use in the method for determining the force relaxation function of the bushing. The new nonlinear viscoelastic bushing model, which is called Pipkin-Rogers model, is proposed and it is shown that the predictions of the proposed force-displacement relation are in very good agreement with the exact results. This new bushing model is thus very suitable for use in multi-body dynamics codes. The success of the present study for axial mode response suggests that the same approach be applied to other modes, such as torsional or radial modes.

  • PDF

Development of the Air Floating Conveyor System for the Large Glass Sheet (대평판 글라스 이송용 공기 부상 이송장치의 개발)

  • Lee, Tae Geol;Yu, Jin Sik;Jung, Hyo Jae;Kim, Jong-Hyeong;Kim, Joon Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.635-642
    • /
    • 2013
  • We have prepared a DEMO conveyor device for conveying a large 8G class glass sheet using ahorizontal air-cushion system. This device consists of the body frame and the driving frame that are combined to realize a frame for conveying glass without any contact.The driving frame comprises an air flotation table (bed), drive roller supported at both ends, and ASU. Part of the ASU serves to control the airflow as the chamber consists of a porous pad and fan. Fiber filters replace the porous pad and axial fans serve as an air compressor. In addition, to determine the appropriate glass levitation from the air table, this study examined the design specifications of the applied filter (discharge speed of HEPA and ULPA filters, and flow rate) as well as the height of the and the proper supporting roller height (14mm). Then, after adjusting the position of the ASU and the number of ASUs required to configure the UNIT air floating C/V, we analyzed the height and flatness of the glass and derived the appropriate layout (1140-mm distance between ASUs).

The Clinical Effect and Construction of a Stereotactic Whole Body Immobilization Device (전신 정위 고정장치 제작과 임상효과에 대한 연구)

  • 정진범;정원균;서태석;최경식;진호상;지영훈
    • Progress in Medical Physics
    • /
    • v.15 no.1
    • /
    • pp.30-38
    • /
    • 2004
  • Purpose: To develop a whole body frame for the purpose of reducing patient motion and minimizing setup error for extra-cranial stereotactic radiotherapy, and to evaluate the repositioning setup error of a patient in the frame. Materials and Methods: The developed whole body frame is composed of a base plate, immobilizer, vacuum cushion, ruler and belts. The dimension of the base plate is 130 cm in length, 50 cm in width and 1 cm in thickness. The material used in the base plate of the frame was bakelite and the immobilizer was made of acetal. In addition, Radiopaque angio-catheter wires were engraved on the base plate for a coordinate system to determine the target localization. The measurement for radiation transmission and target localization is peformed in order to test the utilization of the frame. Also, a Matlab program analyzed the patients setup error by using the patient's setup images obtained from a CCTV camera and digital record recorder (DVR). Results: A frame that is useful for CT simulation and radiation treatment was fabricated. The frame structure was designed to minimize collisions from the changes in the rotation angle of the gantry and to maximize the transmission rate of the Incident radiation at the lateral or posterior oblique direction. The lightening belts may be used for the further reduction of the patient motion, and the belts can be adjusted so that they are not in the way of beam direction. The radiation transmission rates of this frame were measured as 95% and 96% at 10 and 21 MV, respectively. The position of a test target on the skin of a volunteer is accurately determined by CT simulation using the coordinate system in the frame. The estimated setup errors by Matlab program are shown 3.69$\pm$1.60, 2.14$\pm$0.78 mm at the lateral and central chest, and 7.11 $\pm$2.10, 6.54$\pm$2.22 mm at lateral and central abdomen, respectively. The setup error due to the lateral motion of breast is shown as 6.33$\pm$ 1.55 mm. Conclusion: The development and test of a whole body frame has proven very useful and practical in the radiosurgery for extra-cranial cancers. It may be used in determining target localization, and it can be used as a patient immobilization tool. More experimental data should be obtained in order to improve and confirm the results of the patient setup error.

  • PDF