• 제목/요약/키워드: cushion curve

검색결과 14건 처리시간 0.026초

Modeling and Analysis of Cushioning Performance for Multi-layered Corrugated Structures

  • Park, Jong Min;Kim, Ghi Seok;Kwon, Soon Hong;Chung, Sung Won;Kwon, Soon Goo;Choi, Won Sik;Kim, Jong Soon
    • Journal of Biosystems Engineering
    • /
    • 제41권3호
    • /
    • pp.221-231
    • /
    • 2016
  • Purpose: The objective of this study was to develop cushion curves models and analyze the cushioning performance of multi-layered corrugated structures (MLCS) using a method based on dynamic stress-energy relationship. Methods: Cushion tests were performed for developing cushion curve models under 12 combinations of test conditions: three different combinations of drop height, material thickness, and static stress for each of four levels of energy densities between 15 and $60kJ/m^3$. Results: Dynamic stress and energy density for MLCS followed an exponential relationship. Cushion curve models were developed as a function of drop height, material thickness, and static stress for different paperboards and flute types. Generally, the differences between the shock pulse (transmitted peak acceleration) and cushion curve (position and width of belly portion) for the first drop and the averaged second to fifth drop were greater than those for polymer-based cushioning materials. Accordingly, the loss of cushioning performance of MLCS was estimated to be greater than that of polymer-based cushioning materials with the increasing number of drops. The position of the belly of the cushion curve of MLCS tends to shift upward to the left with increasing drop height, and the belly portion became narrower. However, depending on material thickness, under identical conditions, the cushion curve of MLCS showed an opposite tendency. Conclusions: The results of this study can be useful for environment-friendly and optimal packaging design as shock and vibrations are the key factors in cushioning packaging design.

실험용 수치제어 쿠션 시스템의 개발과 드로잉 성형성에 미치는 영향 (Development of Experimental Numerically Controlled Cushion System and Its Effects on Drawability)

  • 이정우;최치수;최이천
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 추계학술대회 논문집
    • /
    • pp.120-123
    • /
    • 2000
  • It is well known, for many years, that deep drawability can be improved by applying variable blank holding force. To apply variable blank holding force during cup during, we set up pressure controlling system on experimental hydraulic press, and the pressure control system is often called NC(Numerically Controlled) cushion system Using the NC cushion system we compared the drawability of square steel cups with NC cushion and that with conventional cushion. The results show drawability is greatly improved when the pressure control curve is designed in a S-shaped curve. This paper includes design details of the NC cushion system and experimental analysis of drawability with experimental NC cushion system.

  • PDF

Development of Numerically Controlled Hydraulic Cushion System for Use in Deep Drawing of Sheet Metals

  • Lee, Jeong-Woo;Park, Chi-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.301-301
    • /
    • 2000
  • It is well known, for many years, that deep drawability ,can be improved by applying variable blank holding force. To apply variable blank holding force during cup during, we set up pressure controlling system on experimental hydraulic press, and the pressure control system is often called NC(Numerically Controlled} cushion system. Using the NC cushion system we carry out pressure control experiment and the proposed structure shows good performance. And we compare drawability of square steel cups with NC cushion and that with conventional cushion. The results show drawability is greatly improved when the pressure control curve is designed in a S-shaped curve. This paper includes design details of the NC cushion system and experimental analysis of drawability with experimental NC cushion system.

  • PDF

Analysis of Compression and Cushioning Behavior for Specific Molded Pulp Cushion

  • Jongmin Park;Gihyeong Im;Kyungseon Choi;Eunyoung Kim;Hyunmo Jung
    • 한국포장학회지
    • /
    • 제30권1호
    • /
    • pp.53-62
    • /
    • 2024
  • Molded pulp products has become more attractive than traditional materials such as expanded polystyrene foam (EPS) owing to low-priced recycled paper, environmental benefits such as biodegradability, and low production cost. In this study, various design factors regarding compression and cushioning characteristics of the molded pulp cushion with truncated pyramid-shaped structural units were analyzed using a test specimen with multiple structural units. The adopted structural factors were the geometric shape, wall thickness, and depth of the structural unit. The relative humidity was set at two levels. We derived the cushion curve model of the target molded pulp cushion using the stress-energy methodology. The coefficient of determination was approximately 0.8, which was lower than that for EPS (0.98). The cushioning performance of the molded pulp cushion was affected more by the structural factors of the structural unit than by the material characteristics. Repeated impacts, higher static stress, and drop height decreased the cushioning performance. Its compression behavior was investigated in four stages: elastic, first buckling, sub-buckling, and densification. It had greater rigidity during initial deformation stages; then, during plastic deformation, the rigidity was greatly reduced. The compression behavior was influenced by structural factors such as the geometric shape and depth of the structural unit and environmental conditions, rather than material properties. The biggest difference in the compression and cushioning characteristics of molded pulp cushion compared to EPS is that it is greatly affected by structural factors, and in addition, strength and resilience are expected to decrease due to humidity and repetitive loads, so future research is needed.

박판의 덥 드로잉 성형을 위한 수치제어 쿠션 시스팀의 개발 (Development of Numerically Controlled Cushion System for Use in Deep Drawing of Sheet Metals)

  • 이정우;최치수
    • 소성∙가공
    • /
    • 제10권2호
    • /
    • pp.115-122
    • /
    • 2001
  • It is well known, for many years, that deep drawability can be improved by applying variable blank holding force. To apply variable blank holding force during cup drawing, we set up cushion pressure control system on the hydraulic press, and the pressure control system is often called NC(Numerically Controlled) cushion system. A cushion pressure control experiment was carried out using the NC cushion and it was shown that the proposed system produced good performance. The comparison of drawability of square cups with and without NC cushion showed that the drawability could be greatly improved when S-shaped pressure curve was applied. This paper includes design details of the NC cushion system and experimental analysis of drawability with NC cushion system.

  • PDF

농산물 포장용 지류완충재의 새로운 완충곡선 구현을 통한 완충성능 평가 (Cushioning Efficiency Evaluation by using the New Determination of Cushioning Curve in Cushioning Packaging Material Design for Agricultural Products)

  • 정현모
    • 한국포장학회지
    • /
    • 제19권1호
    • /
    • pp.51-56
    • /
    • 2013
  • 본 실험에서는 청과물의 포장 완충재로 사용되고 있는 골판지의 압축 및 충격특성을 이용하여 완충곡선(peak acceleration - static stress curve)을 구현하기 위한 알고리즘을 제시하였다. 본 연구에서 알 수 있듯이 한 개의 동적계수로도 완충곡선을 구현할 수 있음을 알 수가 있었으며, 기존의 완충곡선의 구현시 정적응력 범위 내에서의 실험횟수를 현저하게 줄일 수 있음을 알 수가 있었다. 또한, 골판지 완충재료 외에 플라스틱 발포체 완충재료에도 적용이 가능할 것으로 판단되었다.

  • PDF

자석 척력의 자전거 쿠션장치 적용 및 비선형성 고찰 (An Observation of the Application of a Magnetic Force to the Bicycle Cushion System and its Nonlinearity)

  • 윤성호
    • 한국기계가공학회지
    • /
    • 제17권1호
    • /
    • pp.42-47
    • /
    • 2018
  • This paper describes the dynamical behavior of the bicycle and its nonlinear effect when magnetic repulsive forces are applied to the bicycle cushion system. A finite-element method was used to obtain its reliabilities by comparing the experimental and numerical values and select the proper magnet sizes. The Equivalent spring stiffness values were evaluated in terms of both linear and nonlinear approximations, where the nonlinear effect was specifically investigated for the ride comfort. The corresponding equations of linear and nonlinear motion were derived for the numerical model with three degrees of freedom. Dynamic behaviors were observed when the bicycle ran over a curvilinear road in the form of a sinusoidal curve. The analysis in this paper for the observed nonlinearity of magnetic repulsive forces will be a useful guide to more accurately predict the cushion design for any vehicle system.

골판지의 정적완충특성과 골판지상자의 크리이프 거동 (Static Cushioning Properties of Corrugated Fiberboard and Creep Behavior of Boxes)

  • 박종민;김만수;정성원
    • Journal of Biosystems Engineering
    • /
    • 제20권4호
    • /
    • pp.323-332
    • /
    • 1995
  • The horizontal compression test of some selected corrugated fiberboards was performed to determine the cushioning properties of them. Creep behavior of the corrugated fiberboard boxes, which have been widely used in rural area for packaging fruits and vegetables, was tested. The flute crushing stress of the corrugated fiberboard depended upon mainly the basic weight of the corrugated medium, comparing with the combined basic weight of corrugated fiberboard. When moisture content of the corrugated fiberboards was increased about 8% (d.b.), the flute crushing stress of them was decreased at the rate of 44%~64%. The cushion factor of the sample fiberboards showed much higher value at the lower moisture content of them. These trends appeared to be more obvious at the lower applied stress levels. Also, the cushion factors of the double wall corrugated fiberboards(DW) were observed to be little higher than those of the single wall corrugated fiberboards(SW). The creep behavior of the sample boxes was found to be highly moisture and static load dependent. The creep behavior of the corrugated fiberboard boxes could be well analyzed by the asymptotic slope derived from the creep model.

  • PDF

비선형변형경로를 고려한 가변 블랭크 홀딩력을 통한 자동차 판넬의 성형성 향상 (Improvement of Formability in Automobile Panels by Variable Blank Holding Force with Consideration of Nonlinear Deformation Path)

  • 정현기;장은혁;송윤준;정완진
    • 한국정밀공학회지
    • /
    • 제32권11호
    • /
    • pp.945-952
    • /
    • 2015
  • In drawing sheet metal, the blank holding force is applied to prevent wrinkling of the product and to add a tensile stress to the material for the plastic deformation. Applying an inappropriate blank holding force can cause wrinkling or fracture. Therefore, it is important to determine the appropriate blank holding force. Recent developments of the servo cushion open up the possibility to reduce the possibility of fracture and wrinkling by controlling the blank holding force along the stroke. In this study, a method is presented to find the optimal variable blank holding force curve, which uses statistical analysis with consideration of the nonlinear deformation path. The optimal blank holding force curve was numerically and experimentally applied to door inner parts. Consequently, it was shown that the application of the variable blank holding force curve to door inner parts could effectively reduce the possibility of fracture and wrinkling.

추진제 특성을 이용한 에어백 인플레이터 성능 제어에 대한 실험 및 해석에 대한 연구 (Automotive Airbag Inflator Analysis Using Measured Properties of Modern Propellants)

  • 서영덕;김건우;홍범석;김진호;정석호;여재익
    • 한국자동차공학회논문집
    • /
    • 제18권6호
    • /
    • pp.53-62
    • /
    • 2010
  • An airbag is composed of housing assembly, door assembly, cushion assembly, and an inflator. The inflator is the essential part that generates gas for airbag. When an airbag is activated, it effectively absorbs the crash energy of the passenger by inflating a cushion. In this study, tank tests were performed with newly synthesized propellants with various compositions, and the results are compared with the numerical results. In the simulation of inflator, a zonal model has been adopted which consisted of four zones of flow regions: combustion chamber, filter, gas plenum, and discharge tank. Each zone was described by the conservation equations with specified constitutive relations for gas. The pressure and temperature of each zone of the inflator were calculated and analyzed and the results were compared with the tank test data. In the zone of discharge tank the pressure quickly rose, the pattern of pressure curve was very similar to the pressure curve of real test. And in zone 1 & 2 & 3 the mass of products was increased and decreased with time. In zone 4, the mass of products was increased with time like real inflator. From the similarity of pressure curve in zone 4 and closed bomb calculation the modeled results are well correlated with the experimental values.