• Title/Summary/Keyword: curved-surfaces

Search Result 187, Processing Time 0.03 seconds

Determination of Flexible Tool Path in Curved Surface Finishing Based on Contact Analysis (곡면 다듬질에서 접촉해석에 근거한 유연공우 경로 설정)

  • Cho, Sung-San;Lee, Seung-Yeong;Ryu, Yong-Kyoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.69-74
    • /
    • 2000
  • Roughness of curved surfaces finished with flexible tools depends on the tool/work contact pressure and area. In this study, non-Hertzian closely conforming elastic contact theory is employed to analyze the tool/work contact and to generate a tool path producing a constant pressure at initial contact points. Finishing experiments on curved surfaced are conducted using the tool path. For comparison, curved surface finishing is also performed along the tool path producing a constant tool/work interference depth. It is demonstrated that the tool path of constant contact pressure improves the finished surface roughness.

  • PDF

Exact third-order static and free vibration analyses of functionally graded porous curved beam

  • Beg, Mirza S.;Khalid, Hasan M.;Yasin, Mohd Y.;Hadji, L.
    • Steel and Composite Structures
    • /
    • v.39 no.1
    • /
    • pp.1-20
    • /
    • 2021
  • An exact solution based on refined third-order theory (TOT) has been presented for functionally graded porous curved beams having deep curvature. The displacement field of the refined TOT is derived by imposing the shear free conditions at the outer and inner surfaces of curved beams. The properties of the two phase composite are tailored according the power law rule and the effective properties are computed using Mori-Tanaka homogenization scheme. The equations of motion as well as consistent boundary conditions are derived using the Hamilton's principle. The curved beam stiffness coefficients (A, B, D) are obtained numerically using six-point Gauss integration scheme without compromising the accuracy due to deepness (1 + z/R) terms. The porosity has been modeled assuming symmetric (even) as well as asymmetric (uneven) distributions across the cross section of curved beam. The programming has been performed in MATLAB and is validated with the results available in the literature as well as 2D finite element model developed in ABAQUS. The effect of inclusion of 1 + z/R terms is studied for deflection, stresses and natural frequencies for FG curved beams of different radii of curvature. Results presented in this work will be useful for comparison of future studies.

A Determination of Approximated Cylindrical Surfaces of Doubly Curved Surfaces for the Least Line Heating (최소 2차 가공을 위한 이중 곡면의 롤러 굽힘 형상 결정)

  • Dae-Kyu Yun;Jong-Gye Shin;Cheol-Ho Ryu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.3
    • /
    • pp.134-143
    • /
    • 1999
  • The ship's bows and sterns are assembled with the curved blocks. In shipyards, the roller bending and the line heating or others are being used to fabricate such doubly curved shell. Firstly, the cylinder- or cone-type is formed through the roller bending, and then, the line heating is implemented to form the rest. This paper presents an algorithm to determine the direction for the roller bending and the shape to be formed as fabrication information. The direction for the roller bending is determined with Gauss mapping of the desired surface and the shape to form is calculated by comparing the bent shape with the desired shape.

  • PDF

A Study on Solar Radiation and Efficient Solar Panel of Icosahedron-based Hemispherical Dome (정20면체기반 반구형 돔의 일사량과 효율적인 솔라패널에 관한 연구)

  • Shon, Su-Deok;Lee, Don-Woo;Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.1
    • /
    • pp.53-64
    • /
    • 2016
  • Solar power is being spotlighted recently as a new energy source due to environmental problems and applications of solar power to curved structures are increasing. Solar panels installed on curved surfaces have different efficiencies depending on its position and the efficient positioning of solar panels plays a critical role in the design of solar power generation systems. In this study, the changing characteristics of solar irradiance were analyzed for hemispherical dome with a large curvature and the positioning of solar panels that can efficiently utilize solar energy was investigated. With an icosahedron-based hemispherical dome consisting of triangular elements as target model, a program for calculating solar irradiance using a normal vector of the solar module on each face was developed. Furthermore, the change of solar irradiance according to the sun's path was analyzed by time and season, and its effects on shades were also examined. From the analysis results, the effective positioning could be determined on the basis of the efficiency of the solar panels installed on the dome surfaces on solar irradiance.

Curvature Region Analysis for Application of Plates Forming (곡판 가공방법 적용을 위한 곡률면적 분석)

  • Kim, Chan Suk;Son, Seung Hyeok;Shin, Jong Gye
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.1
    • /
    • pp.70-76
    • /
    • 2015
  • The ship hull is accomplished by assembling various curved surfaces. There are numerous existing methods for ship hull processing, which need certain appropriate processing methods to enable it to be more efficient. The curved hull plates can be divided into convex region and saddle region. It is common to use line heating method to form a saddle region, when it comes to a convex region, it will be triangle heating method to be utilized. A precise analysis for curvature domain is required for the application of proper processing method. There exist various problems on existing calculation methods of curvature domain. Therefore, a more powerful method is demanded to it more accurately. In this study, a method called Dual Contouring is applied to extract curved surfaces, which is able to improve accuracy of extracted area. Based on all above, a best-suited heat processing method should be selected.

Dsign of Aperture-Matched type Slot Antenna for Ultra Wide-Band (개구-정합 형태를 갖는 UWB용 슬롯 안테나의 설계)

  • Mun, Byung-In;Kim, Ho-Yong;Lee, Hong-Min
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.217-220
    • /
    • 2005
  • In this paper describes novel m antenna using aperture matched type slot structure. It substitutes edge diffractions by curved-surface diffractions which have a tendency to provide an undisturbed energy flow across the junction, around the curved surface, and into free-space. The proposed antenna is composed of a CPW feed structure, exponential tapered slot and the curved sectional at the edge. experimental resulte show that aperture matched type slot improve the performance of the UWB antenna.

  • PDF

Study on Construction Example of Free Formed Curved Facade using External UHPC Panels -Focused on the Remodeling Construction of Samsung-dong KEB Hana Bank - (UHPC 외장패널을 활용한 비정형 곡면 파사드의 시공사례에 대한 연구 - 삼성동 KEB 하나은행 리모델링 공사 -)

  • Park, Young-Mi;Kim, Hye Won;Park, Ki-Hong;Kim, Sung-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.62-63
    • /
    • 2017
  • According to the rapid development of digital technology, the free formed buildings with complex and various curved surfaces are being constructed. Most of the external cladding of free formed buildings have been applied materials such as metal, glass, FRP, GFRC, etc. However, these materials have many disadvantages such as a complicated manufacturing process for realizing 3D irregular shape and an increase in production period and cost. Therefore, the studies for UHPC which is an optimized material for overcoming this problem for a long time in overseas. This study reviewed the remodeling construction of Samsung-dong KEB Hana Bank appling the exterior curved UHPC panel for the first time in Korea. As a result, we confirmed the possibility of UHPC panels with various free formed shapes.

  • PDF

Precision of Digital Photogrammetry for the Roughness Measurement of Rock Surfaces

  • Lee, Hyo-Sung;Ahn, Ki-Won;Park, Byung-Uk;Kim, Yong-Il
    • Korean Journal of Geomatics
    • /
    • v.3 no.1
    • /
    • pp.43-51
    • /
    • 2003
  • This paper presents the benefits of using close-range digital photogrammetric techniques for measuring the roughness of rock surfaces, using digital stereo images obtained from a Rolleiflex 6006 metric camera. To precisely measure surface roughness, we researched on how to use the flat and curved reference surface obtained from geometrically corrected digital images of the rock surface by using the least squares method. To test the precision of the proposed technique, the surface roughness has been measured between the reference surface and sample areas of very smooth-surfaced rock. Then the results were compared with the measurements obtained from a laser sensor profilometer.

  • PDF

A Novel Contour Path finite Difference Time Domain (CPFDTD) Algorithm for Modeling Objects with Curved Surfaces (곡면을 가진 물체의 모델링을 위한 새로운 CPFDTD 앨거리즘)

  • 이민수;박영태
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.5
    • /
    • pp.931-936
    • /
    • 2000
  • A novel CPFDTD algorithm for modeling the smooth curved surfaces is presented. This scheme subdivides electric fields on the distorted grid into the extended contour field, the non-distorted field, and the quasi-available field to avoid the collinear borrowing approximation. Several preceding methods are applied to the I-plane sectoral horn antenna to get far-field patterns. The accuracy of the presented method is demonstrated by comparison with measured values.

  • PDF

Multi-stage NC Milling of Uncut Volume caused by Gouging Interference at the Machining of Curved Surfaces (곡면가공시 공구간섭에 따른 미절삭체적의 다단계 NC가공)

  • 맹희영;차지경
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.439-444
    • /
    • 2004
  • A new efficient intelligent machining strategy named the Steepest Directed Tree method is presented in this study, which makes surface model discrete with triangulation meshes and the cutter paths track along the tree directions. In order to formulate these algorithms practically, it is deduced the multi-stage machining approach of uncut volume caused by cutter gouging in the course of milling using flat end mill. It is systematized the checking process the cutter interference by grouping the 6 kinds of gouging types, which yields the environment of connectivity data lists including CL-data, and then the multi-stage machining strategy, that minimizes uncut area by continuously sequencing the generative subsequent CL-paths, is shamed to determine the second tool path for the next uncut area and to compose the operating multi-stage cutting processes. The completed machining system of curved surfaces is evaluated by testing the practical machining experiments which have various kinds of shape conditions.

  • PDF