• Title/Summary/Keyword: curved domain

Search Result 45, Processing Time 0.033 seconds

CURVED DOMAIN APPROXIMATION IN DIRICHLET'S PROBLEM

  • Lee, Mi-Young;Choo, Sang-Mok;Chung, Sang-Kwon
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.6
    • /
    • pp.1075-1083
    • /
    • 2003
  • The purpose of this paper is to investigate the piecewise wise polynomial approximation for the curved boundary. We analyze the error of an approximated solution due to this approximation and then compare the approximation errors for the cases of polygonal and piecewise polynomial approximations for the curved boundary. Based on the results of analysis, p-version numerical methods for solving Dirichlet's problems are applied to any smooth curved domain.

Fatigue life prediction of horizontally curved thin walled box girder steel bridges

  • Nallasivam, K.;Talukdar, Sudip;Dutta, Anjan
    • Structural Engineering and Mechanics
    • /
    • v.28 no.4
    • /
    • pp.387-410
    • /
    • 2008
  • The fatigue damage accumulation rates of horizontally curved thin walled box-girder bridge have been estimated from vehicle-induced dynamic stress history using rain flow cycle counting method in the time domain approach. The curved box-girder bridge has been numerically modeled using computationally efficient thin walled box-beam finite elements, which take into account the important structural actions like torsional warping, distortion and distortional warping in addition to the conventional displacement and rotational degrees of freedom. Vehicle model includes heave-pitch-roll degrees of freedom with longitudinal and transverse input to the wheels. The bridge deck unevenness, which is taken as inputs to the vehicle wheels, has been assumed to be a realization of homogeneous random process specified by a power spectral density (PSD) function. The linear damage accumulation theory has been applied to calculate fatigue life. The fatigue life estimated by cycle counting method in time domain has been compared with those found by estimating the PSD of response in frequency domain. The frequency domain method uses an analytical expression involving spectral moment characteristics of stress process. The effects of some of the important parameters on fatigue life of the curved box bridge have been studied.

Forward-Looking Synthetic Inverse Scattering Image Formation for a Vehicle with Curved Motion Based on Time Domain Correlation (시간 영역 상관관계 기법을 통한 곡선운동을 하는 차량용 전방 관측 역산란 합성 영상 형성)

  • Lee, Hyukjung;Chun, Joohwan;Hwang, Sunghyun;You, Sungjin;Byun, Woojin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.1
    • /
    • pp.60-69
    • /
    • 2019
  • In this paper, we deal with forward-looking imaging, and focus on forward-looking synthetic inverse scattering imaging for a vehicle with curved motion. For image formation, time domain correlation(TDC) is used and a 2D image of the ground in front of the vehicle is generated. Because TDC is a technique that implements matched filtering for a space-variant system, it is robust to Gaussian additive noise of measurements. Furthermore, comparison and analysis between images from linear motion and curved motion show that the resolution of the image is improved; however, the entropy of the image is increased owing to curved motion.

Time-domain coupled analysis of curved floating bridge under wind and wave excitations

  • Jin, Chungkuk;Kim, MooHyun;Chung, Woo Chul;Kwon, Do-Soo
    • Ocean Systems Engineering
    • /
    • v.10 no.4
    • /
    • pp.399-414
    • /
    • 2020
  • A floating bridge is an innovative solution for deep-water and long-distance crossing. This paper presents a curved floating bridge's dynamic behaviors under the wind, wave, and current loads. Since the present curved bridge need not have mooring lines, its deep-water application can be more straightforward than conventional straight floating bridges with mooring lines. We solve the coupled interaction among the bridge girders, pontoons, and columns in the time-domain and to consider various load combinations to evaluate each force's contribution to overall dynamic responses. Discrete pontoons are uniformly spaced, and the pontoon's hydrodynamic coefficients and excitation forces are computed in the frequency domain by using the potential-theory-based 3D diffraction/radiation program. In the successive time-domain simulation, the Cummins equation is used for solving the pontoon's dynamics, and the bridge girders and columns are modeled by the beam theory and finite element formulation. Then, all the components are fully coupled to solve the fully-coupled equation of motion. Subsequently, the wet natural frequencies for various bending modes are identified. Then, the time histories and spectra of the girder's dynamic responses are presented and systematically analyzed. The second-order difference-frequency wave force and slowly-varying wind force may significantly affect the girder's lateral responses through resonance if the bridge's lateral bending stiffness is not sufficient. On the other hand, the first-order wave-frequency forces play a crucial role in the vertical responses.

Dynamic response of curved Timoshenko beams resting on viscoelastic foundation

  • Calim, Faruk Firat
    • Structural Engineering and Mechanics
    • /
    • v.59 no.4
    • /
    • pp.761-774
    • /
    • 2016
  • Curved beams' dynamic behavior on viscoelastic foundation is the subject of the current paper. By rewritten the Timoshenko beams theory formulation for the curved and twisted spatial rods, governing equations are obtained for the circular beams on viscoelastic foundation. Using the complementary functions method (CFM), in Laplace domain, an ordinary differential equation is solved and then those results are transformed to real space by Durbin's algorithm. Verification of the proposed method is illustrated by solving an example by variating foundation parameters.

Transient analysis of cross-ply laminated shells using FSDT: Alternative formulation

  • Sahan, Mehmet Fatih
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.889-907
    • /
    • 2015
  • This paper aims to present an alternative analytical method for transient vibration analysis of doubly-curved laminated shells subjected to dynamic loads. In the method proposed, the governing differential equations of laminated shell are derived using the dynamic version of the principle of virtual displacements. The governing equations of first order shear deformation laminated shell are obtained by Navier solution procedure. Time-dependent equations are transformed to the Laplace domain and then Laplace parameter dependent equations are solved numerically. The results obtained in the Laplace domain are transformed to the time domain with the help of modified Durbin's numerical inverse Laplace transform method. Verification of the presented method is carried out by comparing the results with those obtained by Newmark method and ANSYS finite element software. Also effects of number of laminates, different material properties and shell geometries are discussed. The numerical results have proved that the presented procedure is a highly accurate and efficient solution method.

Numerical Simulation of Heat and Flow Behaviors in Butt-fusion Welding Process of HDPE Pipes with Curved Fusion Surface (굴곡 융착면을 이용한 고밀도폴리에틸렌 관의 버트 융착 공정에서의 열유체 거동 수치모사)

  • Yoo, Jae Hyun;Choi, Sunwoong;Ahn, Kyung Hyun;Oh, Ju Seok
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.561-566
    • /
    • 2017
  • Butt-fusion welding process is used to join the polymeric pipes. Recently, some researchers suggest the curved surface to enhance a welding quality. We investigated how curved welding surface affects heat and flow behaviors of polymer melt during the process in 2D axisymmetric domain with finite element method, and discussed the effect to the welding quality. In this study, we considered HDPE pipes. In heat soak stage, curved phase interface between the melt and solid is shown along the shape of welding surface. In jointing stage, squeezing flow is generated between curved welding surface and phase interface. The low shear rate in fusion domain reduces the alignment of polymer to the perpendicular direction of pipes, and then this phenomenon is expected to help to enhance the welding quality.

A Modeling of Automated Hull Curved Plates Forming System using SysML (SysML 을 이용한 선체 곡판가공 자동화 시스템 모델링)

  • Noh, Jackyou;Shin, Jong Gye
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.4 no.2
    • /
    • pp.1-13
    • /
    • 2008
  • The development of hull curved plate forming automation system in ship production field begins from the need of stakeholders such as enterprise organization, who need the reduction of cost and time and improvement of productivity, and end users who work for this production process. Even though hull curved plate forming automation system has small scale, it is reasonable to consider the system as an interdisciplinary system, because the system includes all of hardware, software, human and information and has a specified objective to be performed. In this paper, introduction of 4 leading Model-Based Systems Engineering (MBSE)methodologies is described and SysML(Systems Modeling Language), which is designed to analyze, specify, design, and verify complex systems, is introduced in order to support those methodologies. Especially, SysML is applied to system modeling of hull curved plate forming automation system and focused on. The structure diagrams and behavior diagrams based on operational context of the automation system are used to make system architecture. The performed application of SysML to the hull curved plate forming automation system shows an example of applying SysML to the development of other autonomous systems in ship production domain.

  • PDF

Wake dynamics of a 3D curved cylinder in oblique flows

  • Lee, Soonhyun;Paik, Kwang-Jun;Srinil, Narakorn
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.501-517
    • /
    • 2020
  • Three-dimensional numerical simulations were performed to study the effects of flow direction and flow velocity on the flow regime behind a curved pipe represented by a curved circular cylinder. The cylinder is based on a previous study and consists of a quarter segment of a ring and a horizontal part at the end of the ring. The cylinder was rotated in the computational domain to examine five incident flow angles of 0-180° with 45° intervals at Reynolds numbers of 100 and 500. The detailed wake topologies represented by λ2 criterion were captured using a Large Eddy Simulation (LES). The curved cylinder leads to different flow regimes along the span, which shows the three-dimensionality of the wake field. At a Reynolds number of 100, the shedding was suppressed after flow angle of 135°, and oblique flow was observed at 90°. At a Reynolds number of 500, vortex dislocation was detected at 90° and 135°. These observations are in good agreement with the three-dimensionality of the wake field that arose due to the curved shape.

Curvature Region Analysis for Application of Plates Forming (곡판 가공방법 적용을 위한 곡률면적 분석)

  • Kim, Chan Suk;Son, Seung Hyeok;Shin, Jong Gye
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.1
    • /
    • pp.70-76
    • /
    • 2015
  • The ship hull is accomplished by assembling various curved surfaces. There are numerous existing methods for ship hull processing, which need certain appropriate processing methods to enable it to be more efficient. The curved hull plates can be divided into convex region and saddle region. It is common to use line heating method to form a saddle region, when it comes to a convex region, it will be triangle heating method to be utilized. A precise analysis for curvature domain is required for the application of proper processing method. There exist various problems on existing calculation methods of curvature domain. Therefore, a more powerful method is demanded to it more accurately. In this study, a method called Dual Contouring is applied to extract curved surfaces, which is able to improve accuracy of extracted area. Based on all above, a best-suited heat processing method should be selected.