• Title/Summary/Keyword: curved, steel

Search Result 235, Processing Time 0.024 seconds

Development of Composite Fly Ash Pipe (비회 운송용 유리섬유 복합관 개발)

  • Jeong, Gyu-Sang;Won, Sam-Yong;Moon, Jin-Sung
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.33-36
    • /
    • 2007
  • The majority of fly ash pipes in thermal power stations use steel pipes. This makes frequent replacement inevitable due to severe abrasion near the hot and curved section of pipes. Recently, there have been efforts to prevent this abrasion with lining techniques using ceramic or basalt on the inner wall of the pipe. This study uses composite and anti-wear material to maximize the anti-abrasion effects on the hot section of the pipe. The thickness of the abrasion layer was determined by the abrasion ratio of material found through the experiment; the thickness of the reinforcement layer was determined by micromechanics. Experiments were conducted on epoxy resins to test for heat and abrasion. Anti-abrasion test using particle impingement was intended to recreate realistic conditions when abrasion occurs within the hot section of an actual pipe. This study analyzes the abrasion ratio obtained from both the specimen experiment and from on-site measurement and provides evidence that a combination of composites and anti-wear agent can be used to create a fly ash pipe that is lower in costs and higher in quality than what is used currently.

  • PDF

Nonlinear dynamic analysis of RC frames using cyclic moment-curvature relation

  • Kwak, Hyo-Gyoung;Kim, Sun-Pil;Kim, Ji-Eun
    • Structural Engineering and Mechanics
    • /
    • v.17 no.3_4
    • /
    • pp.357-378
    • /
    • 2004
  • Nonlinear dynamic analysis of a reinforced concrete (RC) frame under earthquake loading is performed in this paper on the basis of a hysteretic moment-curvature relation. Unlike previous analytical moment-curvature relations which take into account the flexural deformation only with the perfect-bond assumption, by introducing an equivalent flexural stiffness, the proposed relation considers the rigid-body-motion due to anchorage slip at the fixed end, which accounts for more than 50% of the total deformation. The advantage of the proposed relation, compared with both the layered section approach and the multi-component model, may be the ease of its application to a complex structure composed of many elements and on the reduction in calculation time and memory space. Describing the structural response more exactly becomes possible through the use of curved unloading and reloading branches inferred from the stress-strain relation of steel and consideration of the pinching effect caused by axial force. Finally, the applicability of the proposed model to the nonlinear dynamic analysis of RC structures is established through correlation studies between analytical and experimental results.

Flexible Mold Production Process for Using the PCM (PCM을 활용한 가변형 몰드 제작 프로세스)

  • Kim, Taekoo;Lee, Donghoon;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.272-273
    • /
    • 2014
  • Existing the free-form concrete segments (FCS) mold is produced by state of solid such as steel, wood, Styrofoam that can not be recycled. Using FCS mold result in delay on schedule and decrease of productivity because it consists of irregular curved variety and it requires more time than fixed mold. Thus, FCS mold should be developed which can reduce the costs and also it can be used as semipermanent. The aim of this study is to suggest of flexible mold production process for using the phase change materials(PCM). PCM is maintain that its solid state at low temperature but it changes phase to liquid state by heating. PCM is suitable material for flexible mold due to change of phase in relatively high temperature compare to other phase change materials such as water. Flexible mold is possible that reuse semi-permanently made by PCM. Thus, this study is proposed the process of flexible mold production for using the PCM. The study results will be used as the basic theory for studies on production and installation of FCS.

  • PDF

Experimental and numerical investigation of wire rope devices in base isolation systems

  • Calabrese, Andrea;Spizzuoco, Mariacristina;Losanno, Daniele;Barjani, Arman
    • Earthquakes and Structures
    • /
    • v.18 no.3
    • /
    • pp.275-284
    • /
    • 2020
  • The scope of this study is the comparison between experimental results of tests performed on a base isolated building using helical wire rope isolators (WRs), and results of Nonlinear Response History Analyses (NRHAs) performed using SAP 2000, a commercial software for structural analysis. In the first stage of this research, WRs have been tested under shear deformation beyond their linear range of deformation, and analytical models have been derived to describe the nonlinear response of the bearings under different directions of loading. On the following stage, shaking table tests have been carried out on a 1/3 scale steel model isolated at the base by means of curved surface sliders (CSS) and WRs. The response of the structure under ground motion excitation has been compared to that obtained using numerical analyses in SAP 2000. The feasibility of modelling the nonlinear behavior of the tested isolation layer using multilinear link elements embedded in SAP 2000 is discussed in this paper, together with the advantages of using WRs as supplemental devices for CSSs base isolated structures.

Application of Elastomeric Bearing for Railway Bridge (철도교량의 탄성받침 적용방안)

  • Kang, T.W.;Oa, S.W.;Kim, D.S.;Kang, Y.S
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1697-1702
    • /
    • 2010
  • It has been recognized for decades that the spherical bearing which is sliding on curved surface in the intrinsic behavior is optimized for the railway bridge requiring a large slope deflection. However, the spherical bearing is easily corrosived at the PSC girder bridge which is exposed to the outside so the normal function of bridge bearing is not fulfilled fully. It is common that the corrosion is happened at the operating plate of steel bridge bearing and generally it is necessary to replace the bridge bearing after 20~25 years. Accordingly, It costs multi billion dollars for maintenance each year and the necessity of improvement become a issue. Korea Rail Network Authority(KR) suggested to apply the Elastomeric bearing instead of Spherical bearing through the task of construction site of 2006. But the normal Elastomeric bearing is optimized for the Highway bridge so it needs the special consideration to satisfy each design condition required by railway bridge. As the result of examination of Elastomeric bearing at the railway bridge construction site, the stress is decreased by effective dispersion of earthquakes and the maintenance fee is also decreased.

  • PDF

Shear Strength Incorporated with Internal Force State Factor in RC Slender Beams (내력상태계수 도입을 통한 RC보의 전단강도분석)

  • 정제평;김희정;김우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.912-917
    • /
    • 2003
  • In this paper a new truss modeling technique for describing the beam shear resistance mechanism is proposed based on the reinterpretation of the well-known relationship between shear and the rate of change of bending moment in a reinforced concrete beam subjected to combined shear and moment loads. The core of the model is that a new perspective on the shear resistance can be gained by viewing the internal stress filed in terms of the superposition of two base components of shear resistance; arch action and beam action. The arch action can be described as a simple tied-arch which is consisted of a curved compression chord and a tension tie of the longitudinal steel, while the beam action between the two chords can be modeled as a membrane shearing element with forming a smeared truss action. The compatibility of deformation associated to the two action is taken into account by employing an experimental factor or internal state force factor a. Then the base equation of V=dM/dx is numerically duplicated. The new model was examined by the 362 experimental results. The shear strength predicted by the internal force state factor a show better correlation with the tested values than the present shear design.

  • PDF

A Study on Molten Salt Electrorefining of Uranium Metal Using Low Carbon Steel Cathode (저 탄소강 음극을 사용한 금속우라늄의 용융염 전해정련에 관한 연구)

  • Yang, Y.S.;Kang, Y.H.;Hwang, S.C.
    • Applied Chemistry for Engineering
    • /
    • v.10 no.8
    • /
    • pp.1119-1123
    • /
    • 1999
  • In this paper, electrorefining of uranium metal was studied to develop pyrometallurgical processing technology in molten salt system. The reaction between uranium metal and $CdCl_2$ was taken about 3 hours and the uranium metal deposits were obtained in the form of dendrite grown on the cathode surface in every electrotransport experiment. The shapes of dendrite were changed according to the applied voltages. Current efficiency was decreased with the increase of current density. Deposition rate was not changed after 6 hours and its maxium was obtained at $100{\sim}150mA/cm^2$ of current density and about 75 rpm of stirring speed, respectively. Also, the current efficiency was increased with decrease of the pitch of spiral groove curved on cathode.

  • PDF

Prediction of Mechanical Properties with Different Cooling Rates of AC4CH Cast Aluminum Alloy and its Application in Computer Simulation (알루미늄 AC4CH 합금주물의 냉각속도 변화에 따른 기계적 물성 예측 및 전산모사 적용)

  • Lee, Byoung-Jun;Cho, In-Sung
    • Journal of Korea Foundry Society
    • /
    • v.38 no.2
    • /
    • pp.41-47
    • /
    • 2018
  • In a numerical study, equations relating the mechanical properties and cooling rate in a casting process have been applied to an AC4CH cast aluminum alloy. Good agreement was found between the measured and predicted material properties. Step-shaped steel blocks were made to comprise a casting mold with a Y-shaped cavity. Thermometers were inserted into each step of the mold to investigate temperature changes. The microstructure and mechanical properties, such as hardness and tensile stress were measured for each cut of piece. The correlation between the cooling rate and SDAS was found by curved fitting. Moreover, both the solidification time and the temperature were simulated using a commercial package, ZCast. The simulation results for yield strength, tensile strength, elongation, and hardness were compared with experimental results. Using the estimated K and n values, the hardness values of a ship propeller were simulated, and the results were similar to those obtained for actual castings.

Statistical Analysis of Cutting Force for End Milling with Different Cutting Tool Materials (공구재종에 따른 엔드밀 가공의 절삭력에 관한 통계적해석)

  • Choi, Man Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.4
    • /
    • pp.86-91
    • /
    • 2016
  • End milling is an important and common machining operation because of its versatility and capability to produce various profiles and curved surfaces. This paper presents an experimental study of the cutting force variations in the end milling of SM25C with HSS(high speed steel) and carbide tool. This paper involves a study of the Taguchi design application to optimize cutting force in a end milling operation. The Taguchi design is an efficient and effective experimental method in which a response variable can be optimized, given various control and noise factors, using fewer resources than a factorial design. This study included feed rate, spindle speed and depth of cut as control factors, and the noise factors were different cutting tool in the same specification. An orthogonal array of $L_9(3^3)$ of ANOVA analyses were carried out to identify the significant factors affecting cutting force, and the optimal cutting combination was determined by seeking the best cutting force and signal-to-noise ratio. Finally, confirmation tests verified that the Taguchi design was successful in optimizing end milling parameters for cutting force.

Plate Forming Automation System of Steel Plates by Line Heating Method(I) (선상가열법에 의한 강판의 곡가공 자동화 시스템(I))

  • Joo-Sung Lee;Sang-Il Kim;Seok-Jin Oh
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.4
    • /
    • pp.139-146
    • /
    • 1994
  • In this paper a feasible way toward the automation for plate forming by line heating method is proposed. For this a mechanical model representing the line heating phenomenon is adopted and a reasonable algorithm is introduced to search the heating path under the given heating conditions, which can produce the surface very similar to the given surface. A computer program system has been developed according to the proposed algorithm here. It has been applied to two curved shapes to show its validity. From the results it has been found that the proposed algorithm and the developed computer program system give a good result and can be a possible way getting to the automation system of plate forming by the line heating method.

  • PDF