• Title/Summary/Keyword: curve fitted equation

Search Result 65, Processing Time 0.026 seconds

Development of Curve Fitted Equation for the Dynamic Response of a Buried Concrete Pipelines with Various End Boundary Conditions (여러 단부경계조건을 가진 콘크리트 매설관의 동적응답에 대한 곡선적합식의 개발)

  • Jeong, Jin-Ho;Kim, Sung-Ban;Joeng, Du-Hwoe
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.572-581
    • /
    • 2006
  • This study is to investigate dynamic response of concrete buried pipelines with various end boundary conditions and develop a curve fitted equation to ensure practicality and convenience for the use at the actual field for the test of resistance of earthquake. Dynamic response under the various end boundary conditions is calculated with analysis on values and computing programs. However, such a method of analysis requires skillfulness in using computing programs for dynamic movement of buried pipelines with dynamic analysis formula and has lower efficiency and practicality because, in the nature of analysis program of values, it needs much time to conduct repeated calculations. Therefore, the study is intended to develop a curve fitted equation to ensure more efficient and practical analysis. This paper tests various degrees of equation with non-linear least square method and developments a curve fitted equation based on the transmission speed with the best results. In the use of curve fitted equation, degree of polynomial and determining coefficient are influenced by the speed of transmission.

  • PDF

Development of Curve Fitted Equations for Seismic Performance Evaluation of Various Buried Pipelines (각종 매설관의 내진성능평가를 위한 곡선적합식의 개발)

  • Jeong, Jin-Ho;Park, Byung-Ho;Kim, Sung-Ban
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1326-1333
    • /
    • 2006
  • Purpose of this research is a development for the curve fitted equations that can improve practical calculation and work application when seismic performance has been evaluated and this work has been made a study of the dynamic response under various boundary conditions of buried pipelines to compare the dynamic behavior of concrete pipe and steel pipe, FRP pipe. This research have been developed curve fitted equations that can be improving efficiency and practicality. Using a nonlinear least square method, and after testing several different exponential equations, Proposed the curve fitted equations to give the best result and constant value by the propagation velocities. With these results, dynamic response analysis and seismic performance evaluation have been achieved on concrete pipe, steel pipe and FRP pipe that have a various boundary conditions. Degree of a polynomial expression and coefficient value by propagation velocity have been calculated when using the curve fitting equations.

  • PDF

Development of Curve Fitted Equation about Dynamic Response Analysis of a Buried Concrete Pipelines (콘크리트 매설관의 동적응답해석에 대한 곡선적합식의 개발)

  • Jeong Jin-Ho;Kim Sung-Ban;Ahn Myung-Seok
    • Explosives and Blasting
    • /
    • v.24 no.1
    • /
    • pp.9-19
    • /
    • 2006
  • The objective of this study is to propose curve fitted equations that can facilitate calculations and improve a practical applicability when the seismic performance of buried pipelines needs to be evaluated. The curve fitted equations are derived based on the evaluation of the dynamic responses of concrete pipe with a boundary condition of fixed-free ends. To study the dynamic response of underground pipe, the numerical analysis program developed in the previous research has been used. The location of maximum strain has been determined through dynamic analyses for a boundary condition of fixed-free ends. Then $wavelength{\lambda}$ of 5-1000(m) and propagation velocity(Vs) of 100-2000(m/s) have been applied at the location of maximum strain and the unit srain curve with the changes of the $wavelength{\lambda}$ and propagation velocity(Vs) has been obtaind. Non-linear least-square regression has been used to develop highly applicable curve fitted equations and various types of exponential regression equations have been checked out. Thus curve fitted equations and necessary coefficients with best results are suggested.

Development of Curve Fitted Equations for Dynamic Behavior of Various Buried Pipelines (각종 매설관의 동적거동에 대한 곡선적합식의 개발)

  • Kim, Sung-Ban;Jeong, Jin-Ho;Joeng, Du-Hwoe;Lee, Kwang-Yeol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.4 s.50
    • /
    • pp.25-33
    • /
    • 2006
  • The purpose of this study is to develop the curve fitted equations for practicality and actual calculation during seismic performance evaluation of buried pipelines. Curve fitting for strain curve according to the wavelength of the seismic wave was produced using the non-linear least square method and the equations with the best results was suggested. In addition, a degree and coefficient of polynomial fitting equation needed to use curve fitted equation were identified. Interpreting process during the test of resistance of earthquake of buried pipelines with various end boundary conditions were provided through example questions. The results of this study were used to conduct a dynamic response analysis and a seismic performance evaluation of concrete, steel, and FRP pipes with various end boundary conditions.

An Accurate Model of Multi-Type Overcurrent Protective Devices Using Eigensystem Realization Algorithm and Practice Applications

  • Cheng, Chao-Yuan;Wu, Feng-Jih
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.9-19
    • /
    • 2016
  • Accurate models of the characteristics of typical inverse-time overcurrent (OC) protective devices play an important role in the protective coordination schemes. This paper presents a novel approach to determine the OC protective device parameters. The approach is based on the Eigensystem Realization Algorithm which generates a state space model to fit the characteristics of OC protective devices. Instead of the conventional characteristic curves, the dynamic state space model gives a more exact fit of the OC protective device characteristics. This paper demonstrates the feasibility of decomposing the characteristic curve into smooth components and oscillation components. 19 characteristic curves from 13 typical and 6 non-typical OC protective devices are chosen for curve-fitting. The numbers of fitting components required are determined by the maximum absolute values of errors for the fitted equation. All fitted equations are replaced by a versatile equation for the characteristics of OC protective devices which represents the characteristic model of a novel flexible OC relay, which in turn may be applied to improve the OC coordination problems in the sub-transmission and distribution systems.

Comparison of linear and non-linear equation for the calibration of roxithromycin analysis using liquid chromatography/mass spectrometry

  • Lim, Jong-Hwan;Yun, Hyo-In
    • Korean Journal of Veterinary Research
    • /
    • v.50 no.1
    • /
    • pp.11-17
    • /
    • 2010
  • Linear and non-linear regressions were used to derive the calibration function for the measurement of roxithromycin plasma concentration. Their results were compared with weighted least squares regression by usual weight factors. In this paper the performance of a non-linear calibration equation with the capacity to account empirically for the curvature, y = ax$^{b}$ + c (b $\neq$ 1) is compared with the commonly used linear equation, y = ax + b, as well as the quadratic equation, y = ax$^{2}$+ bx + c. In the calibration curve (range of 0.01 to 10 ${\mu}g/mL$) of roxithromycin, both heteroscedasticity and nonlinearity were present therefore linear least squares regression methods could result in large errors in the determination of roxithromycin concentration. By the non-linear and weighted least squares regression, the accuracy of the analytical method was improved at the lower end of the calibration curve. This study suggests that the non-linear calibration equation should be considered when a curve is required to be fitted to low dose calibration data which exhibit slight curvature.

Estimation of Soil Water Characteristic Curve and Unsaturated Permeability Coefficient for Domestic Weathered Grainite Soil (국내 풍화토의 함수특성곡선 및 불포화 투수계수 추정에 관한 연구)

  • Lee, Sung-Jin;Kim, Yun-Ki;Lee, Hye-Ji;Lee, Seung-Rae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.334-341
    • /
    • 2004
  • The coefficient of permeability is one of the most important properties in unsaturated soils. The permeability varies with change in the water content as the soil water characteristic curve(SWCC) does. Thus the permeability curve of unsaturated soils has the similar shape with the soil-water characteristic curve(SWCC). Therefore, the methodologies have been studied to simply predict the unsaturated permeability from the SWCC. In this study, the experimental tests of SWCC and permeability were carried out for domestic weathered granite soils. The SWCC test results were fitted to Fredlund and Xing's SWCC equation and then it was found that there are some relationships between the parameters of SWCC equation and the basic soil properties. Accordingly we used an ANN(artificial neural network) model to obtain the SWCC parameters from the basic soil properties. Finally, the coefficients of permeability were predicted from these results by a prediction model.

  • PDF

Study on Adsorption Characteristics of Tharonil from Aqueous Solution by Activated Carbon Adsorption (활성탄에 의한 Tharonil의 흡착특성에 관한 연구)

  • 이종집;유용호
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.4
    • /
    • pp.88-94
    • /
    • 2000
  • The adsorption characteristics of Tharonil on granular activated carbon were experimentally investigated in an adsorber and in a packed column. It was estabilished that the adsorption equilibrium of Tharonil on granular activated carbon was more successfully fitted by Freundlich isotherm equation than Langmuir isotherm equation in the concentration range from 1 to 1000 mg/1. Intraparticle diffusivities (pore and surface diffusivity) of Tharonil were estimated by the concentration-time curve and adsorption isotherm. The estimated values of pore diffusivity and surface diffusivity are $6.70{\times}10^{-6}$ and $2.0{\times}10^{-9}cm^2/s$, respectively. From comparison of intraparticle diffusivities, it was found that surface diffusion was the limiting step for adsorption rate. The break time and breakthrough curve predicted by constant pattern-linear driving force model were shown to agree with the experimental results.

  • PDF

Size selectivity of round traps for greenling (Hexagrammos otakii) in the western sea of Korea (원통형 통발에 대한 서해안 쥐노래미 (Hexagrammos otakii)의 망목선택성)

  • 신종근;박해훈
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.3
    • /
    • pp.174-180
    • /
    • 2003
  • This study investigated the size selectivity of the round traps for greenling (Hexagrammos otakii) in the western sea of Korea. The selection curve for the greenling from the experiments on Oct. 2000 and Ar. 2001 was fitted by Kitahara's method to a polynomial equation and two parameter logistic selection curve. The selectio curve of the latter was more reasonable than that of the former. The equation of selectivity curve obtained using a logistic function with least square method was , s(R)=1/1+exp(-1.1169R+6.4565), where R=1/m, and 1 and m are total length and mesh size, respectively. The size selectivity curve showed that the current regulated mesh size(35mm) in case of the round trap was close to the L50 (37.0mm) of the selection curve for the biological minimum length (21.4cm) of the greenling.

Deceleration stage and modeling of hydration heat flow for fly ash cement paste (플라이애쉬 시멘트 페이스트의 수화열류 감속 단계 분석 및 모델링에 대한 실험적 연구)

  • Wang, Zihao;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.13-14
    • /
    • 2022
  • This study investigated the effect of fly ash content on the isothermal hydration heat of cement pastes. Two different pastes with fly ash content were studied to cure at 35℃. The hydration heat flow deceleration stage of slurry was simulated and compared by Jander Equation and Ginstling-Brounshtein Equation. The results show that Jander Equation and Ginstling-Brounshtein Equation have certain defects in the modeling of the deceleration stage of the heat flow of cement fly ash paste, and the fitted curve can not describe the deceleration stage well.

  • PDF