• Title/Summary/Keyword: curvature radius

Search Result 583, Processing Time 0.026 seconds

A Morphometric Study of Primary Anterior Zirconia Crowns in Korean Tooth Models (한국 유치 모델에서 유전치 지르코니아 크라운의 형태계측학적 연구)

  • Park, Jungha;Lee, Sangho;Lee, Nanyoung;Jih, Myoungkwan
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.45 no.1
    • /
    • pp.41-56
    • /
    • 2018
  • The purpose of this study was to provide clinical recommendations for restoration with selection of the most similar zirconia crown by 3-dimensional analysis of the shape of the maxillary primary central and lateral incisors in Korean individuals and prefabricated zirconia crowns. The average shape of the sound maxillary primary central and lateral incisors in 300 children was reproduced by 3-dimensional scanning. Zirconia crowns of 4 manufacturers (NuSmile $ZR^{(R)}$ Crown, Cheng $Crowns^{(R)}$, Kinder $Krowns^{(R)}$, and EZ $Pedo^{(R)}$ Crown) were scanned 3-dimensionally, and coordinates for comparison of the shape were measured to evaluate the similarity between the teeth and crowns. The most similar crowns were selected by comparing the mesiodistal length, crown height, crown shape ratio, distance between the same coordinates of a tooth and crown, the radius of curvature of the labial surface, and the volume. As a result of analysis, Cheng $Crowns^{(R)}$ size 3 and NuSmile $ZR^{(R)}$ Crown size 2 were the most similar crowns in the maxillary primary central and lateral incisors, respectively. Scanning the inner surface of the crowns and evaluating the amount of tooth reduction required suggested that an overall lesser amount of tooth reduction compared to that presented by the manufacturer's guidelines should be performed.

Luminous Characteristics of Transparent Field Emitters Produced by Using Ultra-thin Films of Single Walled Carbon Nanotubes

  • Jang, Eun-Soo;Goak, Jeung-Choon;Lee, Han-Sung;Lee, Seung-Ho;Lee, Nae-Sung
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.31.1-31.1
    • /
    • 2009
  • Carbon nanotubes (CNTs) are attractive material because of their superior electrical, mechanical, and chemical properties. Furthermore, their geometric features such as a large aspect ratio and a small radius of curvature at tip make them ideal for low-voltage field emission devices including backlight units of liquid crystal display, lighting lamps, X-ray source, microwave amplifiers, electron microscopes, etc. In field emission devices for display applications, the phosphor anode is positioned against the CNT emitters. In most case, light generated from the phosphor by electron bombardment passes through the anode front plate to reach observers. However, light is produced in a narrow depth of the surface of the phosphor layer because phosphor particles are big as much as several micrometers, which means that it is necessary to transmit through the phosphor layer. Hence, a drop of light intensity is unavoidable during this process. In this study, we fabricated a transparent cathode back plate by depositing an ultra-thin film of single walled CNTs (SWCNTs) on an indium tin oxide (ITO)-coated glass substrate. Two types of phosphor anode plates were employed to our transparent cathode back plate: One is an ITO glass substrate with a phosphor layer and the other is a Cr-coated glass substrate with phosphor layer. For the former case, light was radiated from both the front and the back sides, where luminance on the back was ~30% higher than that on the front in our experiments. For the other case, however, light was emitted only from the cathode back side as the Cr layer on the anode glass rolled as a reflecting mirror, improving the light luminance as much as ~60% compared with that on the front of one. This study seems to be discussed about the morphologies and field emission characteristics of CNT emitters according to the experimental parameters in fabricating the lamps emitting light on the both sides or only on the cathode back side. The experimental procedures are as follows. First, a CNT aqueous solution was prepared by ultrasonically dispersing purified SWCNTs in deionized water with sodium dodecyl sulfate (SDS). A milliliter or even several tens of micro-liters of CNT solution was deposited onto a porous alumina membrane through vacuum filtration. Thereafter, the alumina membrane was solvated with the 3 M NaOH solution and the floating CNT film was easily transferred to an ITO glass substrate. It is required for CNT film to make standing CNTs up to serve as electron emitter through an adhesive roller activation.

  • PDF

Characterizing Par ticle Matter on the Main Section of the Seoul Subway Line-2 and Developing Fine Particle Pollution Map (서울시 지하철 2호선 본선구간의 입자상물질 농도 특성 및 미세분진의 오염지도 개발)

  • Lee, Eun-Sun;Park, Min-Bin;Lee, Tae-Jung;Kim, Shin-Do;Park, Duck-Shin;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.2
    • /
    • pp.216-232
    • /
    • 2016
  • In present, the Seoul City is undergoing traffic congestion problems caused by rapid urbanization and population growth. Thus the City government has reorganized the mass transportation system since 2004 and the subway has become a very important means for public transit. Since the subway system is typically a closed environment, the indoor air quality issues have often raised by the public. Especially since a huge amount of PM (particulate matter) is emitted from ground tunnels passing through the subway train, it is now necessary to assess the characteristics and behaviors of fine PM inside the tunnel. In this study, the concentration patterns of $PM_1$, $PM_{2.5}$, and $PM_{10}$ in the Seoul subway line-2 were analyzed by real-time measurement during winter (Jan 13, 2015) and summer (Aug 7, 2015). The line-2 consisting of 51 stations is the most busy circular line in Seoul having the railway of 60.2 km length. The the one-day average $PM_{10}$ concentrations were $148{\mu}g/m^3$ in winter and $66.3{\mu}g/m^3$ in summer and $PM_{2.5}$ concentrations were $118{\mu}g/m^3$ and $58.5{\mu}g/m^3$, respectively. The $PM_{2.5}/PM_{10}$ ratio in the underground tunnel was lower than the outdoor ratio and also the ratio in summer is higher than in winter. Further the study examined structural types of underground subsections to explain the patterns of elevated PM concentrations in the line-2. The subsections showing high PM concentration have longer track, shorter curvature radius, and farther from the outdoor stations. We also estimated the outdoor PM concentrations near each station by a spatial statistical analysis using the $PM_{10}$ data obtained from the 40 Seoul Monitoring Sites, and further we calculated $PM_{2.5}/PM_{10}$ and $PM_1/PM_{10}$ mass ratios near the outdoor subway stations by using our observed outdoor $PM_1$, $PM_{2.5}$, and $PM_{10}$ data. Finally, we could develop pollution maps for outdoor $PM_1$ and $PM_{2.5}$ near the line-2 by using the kriging method in spatial analysis. This methodology may help to utilize existing $PM_{10}$ database when managing and control fine particle problems in Korea.

Cyclic fatigue resistance, torsional resistance, and metallurgical characteristics of M3 Rotary and M3 Pro Gold NiTi files

  • Pedulla, Eugenio;Lo Savio, Fabio;La Rosa, Giusy Rita Maria;Miccoli, Gabriele;Bruno, Elena;Rapisarda, Silvia;Chang, Seok Woo;Rapisarda, Ernesto;La Rosa, Guido;Gambarini, Gianluca;Testarelli, Luca
    • Restorative Dentistry and Endodontics
    • /
    • v.43 no.2
    • /
    • pp.25.1-25.10
    • /
    • 2018
  • Objectives: To evaluate the mechanical properties and metallurgical characteristics of the M3 Rotary and M3 Pro Gold files (United Dental). Materials and Methods: One hundred and sixty new M3 Rotary and M3 Pro Gold files (sizes 20/0.04 and 25/0.04) were used. Torque and angle of rotation at failure (n = 20) were measured according to ISO 3630-1. Cyclic fatigue resistance was tested by measuring the number of cycles to failure in an artificial stainless steel canal ($60^{\circ}$ angle of curvature and a 5-mm radius). The metallurgical characteristics were investigated by differential scanning calorimetry. Data were analyzed using analysis of variance and the Student-Newman-Keuls test. Results: Comparing the same size of the 2 different instruments, cyclic fatigue resistance was significantly higher in the M3 Pro Gold files than in the M3 Rotary files (p < 0.001). No significant difference was observed between the files in the maximum torque load, while a significantly higher angular rotation to fracture was observed for M3 Pro Gold (p < 0.05). In the DSC analysis, the M3 Pro Gold files showed one prominent peak on the heating curve and 2 prominent peaks on the cooling curve. In contrast, the M3 Rotary files showed 1 small peak on the heating curve and 1 small peak on the cooling curve. Conclusions: The M3 Pro Gold files showed greater flexibility and angular rotation than the M3 Rotary files, without decrement of their torque resistance. The superior flexibility of M3 Pro Gold files can be attributed to their martensite phase.

Dynamic Interaction Evaluation of Maglev Vehicle and the Segmented Switching System (자기부상열차 차량과 분기기 동적상호작용 시험 평가)

  • Lee, Jong-Min;Han, Jong-Boo;Kim, Sung-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.576-582
    • /
    • 2017
  • The switching system in a maglev train is an indispensable element for distributing train routes, and it should be designed to ensure safe operation. Unlike conventional wheels on rails, the switching track in EMS-type maglev is supported by a group of 3 to 4 steel girders. When the vehicle changes its route, the segmented track allows the girders to change from a straight position to a curved one with a small radius of curvature. Hence, the structural characteristics of the segmented switching system may affect the levitation stability of the maglev vehicle. This study experimentally evaluates the dynamic interaction between maglev vehicles and a segmented switching system. The results may be helpful for improving the switching system. The measured levitation and lateral air gaps were evaluated at a vehicle speed of 25 km/h, and the ride quality of the Maglev vehicle was determined to be "comfortable" according to the UIC 513 standard.

Development of a Solar Concentrator having the Reflecting Surface with the 2m Class Diameter (직경 2m급 반사면을 가지는 태양열 집광 장치 개발)

  • Cha, Jung-Won;Lee, Dong-Hee
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.4
    • /
    • pp.75-81
    • /
    • 2008
  • Purpose: To develop a solar concentrator having the reflecting surface with the 2m class diameter. Methods: In order to make the reflecting surface for the solar concentrator, the shape of the reflecting surface sector is required. So, first, we induced the formula that can produce this shape. After that, using Delphi 6.0 language, we developed a program which uses this formula and produces the shape and the numerical data of the reflecting surface sector with the input variables such as the external diameter of the reflecting mirror, the reflecting mirror's radius of curvature at the paraxial range, the number of reflecting mirror sector, the size of the center hole of the reflecting mirror, and the interval of the output data. Results: This program, which was developed to produce the shape and the numerical data of the reflecting surface sector, enables us to see the shape of sector on the monitor and to save the numerical data files for the shape of sector. As a result, the user of this program can easily access the numerical data of the reflecting surface sector. Conclusions: Developing the program which produce the reflecting surface sector used to make the reflecting surface of the solar concentrator, we could succeed in making the prototype products by applying it to the development of the real solar concentrator with the diameter of the 2m class.

  • PDF

Surface-error Measurement for a Convex Aspheric Mirror Using a Double-stitching Method (이중 정합법을 이용한 볼록비구면 반사경의 형상 오차 측정)

  • Kim, Goeun;Lee, Yun-Woo;Yang, Ho-Soon
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.6
    • /
    • pp.314-322
    • /
    • 2021
  • A reflecting telescope consists of a concave primary mirror and a convex secondary mirror. The primary mirror is easy to measure, because it converges the beam from an interferometer, while the secondary mirror diverges the beam and so is not easy to measure, even though it is smaller than the primary mirror. In addition, the Korsch-type telescope uses the central area of the secondary mirror, so that the entire area of the secondary mirror needs to be measured, which the classical Hindle test cannot do. In this paper, we propose a double-stitching method that combines two separate area measurements: the annular area, measured using the Hindle stitching method, and the central area, measured using a spherical wave from the interferometer. We test the surface error of a convex asphere that is 202 mm in diameter, with 499 mm for its radius of curvature and -4.613 for its conic constant. The surface error is calculated to be 19.5±1.3 nm rms, which is only 0.7 nm rms different from the commercial stitching interferometer, ASI. Also, the two results show a similar 45° astigmatism aberration. Therefore, our proposed method is found to be valuable for testing the whole area of a convex asphere.

Multi-fidelity uncertainty quantification of high Reynolds number turbulent flow around a rectangular 5:1 Cylinder

  • Sakuma, Mayu;Pepper, Nick;Warnakulasuriya, Suneth;Montomoli, Francesco;Wuch-ner, Roland;Bletzinger, Kai-Uwe
    • Wind and Structures
    • /
    • v.34 no.1
    • /
    • pp.127-136
    • /
    • 2022
  • In this work a multi-fidelity non-intrusive polynomial chaos (MF-NIPC) has been applied to a structural wind engineering problem in architectural design for the first time. In architectural design it is important to design structures that are safe in a range of wind directions and speeds. For this reason, the computational models used to design buildings and bridges must account for the uncertainties associated with the interaction between the structure and wind. In order to use the numerical simulations for the design, the numerical models must be validated by experi-mental data, and uncertainties contained in the experiments should also be taken into account. Uncertainty Quantifi-cation has been increasingly used for CFD simulations to consider such uncertainties. Typically, CFD simulations are computationally expensive, motivating the increased interest in multi-fidelity methods due to their ability to lev-erage limited data sets of high-fidelity data with evaluations of more computationally inexpensive models. Previous-ly, the multi-fidelity framework has been applied to CFD simulations for the purposes of optimization, rather than for the statistical assessment of candidate design. In this paper MF-NIPC method is applied to flow around a rectan-gular 5:1 cylinder, which has been thoroughly investigated for architectural design. The purpose of UQ is validation of numerical simulation results with experimental data, therefore the radius of curvature of the rectangular cylinder corners and the angle of attack are considered to be random variables, which are known to contain uncertainties when wind tunnel tests are carried out. Computational Fluid Dynamics (CFD) simulations are solved by a solver that employs the Finite Element Method (FEM) for two turbulence modeling approaches of the incompressible Navier-Stokes equations: Unsteady Reynolds Averaged Navier Stokes (URANS) and the Large Eddy simulation (LES). The results of the uncertainty analysis with CFD are compared to experimental data in terms of time-averaged pressure coefficients and bulk parameters. In addition, the accuracy and efficiency of the multi-fidelity framework is demonstrated through a comparison with the results of the high-fidelity model.

Electrical and Optical Properties According to Detachment and Bending of Carbon Nanotube-coated Transparent Tape (카본나노튜브 코팅된 투명 테이프의 탈착과 벤딩에 따른 전기 및 광학적인 특성)

  • Kyoung-Bo Kim;Jongpil Lee;Moojin Kim
    • Journal of Industrial Convergence
    • /
    • v.21 no.8
    • /
    • pp.35-42
    • /
    • 2023
  • Recently, electronic devices with bendable electronic devices based on flexible substrates are being sold, and therefore, the purpose of this study is to evaluate the possibility of flexible substrates of conductive transparent tapes. As a transparent electrode, carbon nanotube (CNT) was formed by the coating method developed by the research team, and samples coated up to 5 times were fabricated. The surface resistance and transmittance of the substrate were measured, and both resistance and transmittance decreased as the number of CNT coatings increased. After the tape was detached from the glass, the surface resistance slightly increased in all samples, and the transmittance increased by about 10% in all measured wavelength ranges because the glass was removed. Next, the tape coated with CNT twice was used to a bending test 20,000 times under the condition of a radius of curvature of 2 mm. The electrical and optical properties before and after bending did not change, which means that there was no change in CNT properties due to bending.

Flexible Planar Heater Comprising Ag Thin Film on Polyurethane Substrate (폴리우레탄 유연 기판을 이용한 Ag 박막형 유연 면상발열체 연구)

  • Seongyeol Lee;Dooho Choi
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.1
    • /
    • pp.29-34
    • /
    • 2024
  • The heating element utilizing the Joule heating generated when current flows through a conductor is widely researched and developed for various industrial applications such as moisture removal in automotive windshield, high-speed train windows, and solar panels. Recently, research utilizing heating elements with various nanostructures has been actively conducted to develop flexible heating elements capable of maintaining stable heating even under mechanical deformation conditions. In this study, flexible polyurethane possessing excellent flexibility was selected as the substrate, and silver (Ag) thin films with low electrical resistivity (1.6 μΩ-cm) were fabricated as the heating layer using magnetron sputtering. The 2D heating structure of the Ag thin films demonstrated excellent heating reproducibility, reaching 95% of the target temperature within 20 seconds. Furthermore, excellent heating characteristics were maintained even under mechanically deforming environments, exhibiting outstanding flexibility with less than a 3% increase in electrical resistance observed in repetitive bending tests (10,000 cycles, based on a curvature radius of 5 mm). This demonstrates that polyurethane/Ag planar heating structure bears promising potential as a flexible/wearable heating element for curved-shaped appliances and objects subjected to diverse stresses such as human body parts.