• Title/Summary/Keyword: curvature mode

Search Result 121, Processing Time 0.02 seconds

Strain energy release rates in the curved spar wingskin joints with pre-embedded delaminations

  • P.K. Mishra;A.K. Pradhan;M.K. Pandit ;S.K. Panda
    • Structural Engineering and Mechanics
    • /
    • v.87 no.1
    • /
    • pp.47-56
    • /
    • 2023
  • Any pre-existed delamination defect present during manufacturing or induce during service loading conditions in the wingskin adherend invariably shows a greater loss of structural integrity of the spar wingskin joint (SWJ). In the present study, inter-laminar delamination propagation at the critical location of the SWJ has been carried out using contact and multi-point constraint finite elements available with commercial FE software (ANSYS APDL). Strain energy release rates (SERR) based on virtual crack closure technique have been computed for evaluation of the opening (Mode-I), sliding (Mode-II) and cross sliding (Mode-III) modes of delamination by sequential release of multi point constraint elements. The variations of different modes of SERR are observed to be significant by considering varied delamination lengths, material properties of adherends and radius of curvature of the SWJ panel. The SERR rates are seen to be much different at the two pre-embedded delamination ends. This shows dissimilar delamination propagation rates. The maximum is seen to occur in the delamination front in the unstiffened region of the wingskin. The curvature geometry and material anisotropy of SWJ adherends significantly influences the SERR values. Increase in the SERR values are observed with decrease in the radius of curvature of wingskin panel, keeping its width unchanged. SWJs made with flat FRP composite adherends have superior resistance to delamination damage propagation than curved composite laminated SWJ panels. SWJ made with Boron/Epoxy (B/E) material shows greater resistance to the delamination propagation.

The effect of curvature on the impact response of foam-based sandwich composite panels

  • Yurddaskal, Melis;Baba, Buket Okutan
    • Steel and Composite Structures
    • /
    • v.20 no.5
    • /
    • pp.983-997
    • /
    • 2016
  • The aim of this study is to investigate the impact behavior and impact-induced damage of sandwich composites made of E-glass/epoxy face sheets and PVC foam. The studies were carried out on square flat and curved sandwich panels with two different radius of curvatures. Impact tests were performed under impact energies of 10 J, 25 J and 80 J using an instrumented drop-weight machine. Contact force and displacement versus time and contact force- displacement graphs of sandwich panels were presented to determine the panel response. Through these graphs, the energy absorbing capacity of the sandwich panels was determined. The impact responses and failure modes of flat and curved sandwich panels were compared and the effect of curvature on sandwich composite panel was demonstrated. Testing has shown that the maximum contact force decrease while displacement increases with increasing of panel curvature and curved panels exhibits mixed failure mode, with cylindrical and cone cracking.

Vortex-Induced Vibration Analysis of Deep-Sea Riser (심해 라이저의 와류유기 진동해석)

  • Park, Seongjong;Kim, Bongjae
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.364-370
    • /
    • 2017
  • A numerical model based on the mode superposition method is used to study the vortex-induced vibration response characteristics of a deep-sea riser such as steel catenary riser (SCR). A steel catenary riser can be modeled using a flexible cable with simple supports at both ends. The natural frequency, mode shape and mode curvature of the riser are calculated and the vortex-induced vibration response of the riser is obtained using the equilibrium of the input and output power. The mode superposition method is applied to the vibrational stresses for each mode to calculate the overall riser fatigue life.

Free-vibration Characteristics of Two-I-girder Steel Bridges Curved in Plan (소수주형 수평곡선 강교량 상부구조의 자유진동 특성 분석)

  • Lee, Kee Sei;Kim, Seungjun
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.5
    • /
    • pp.365-371
    • /
    • 2016
  • In the case of the superstructure which is consist of two I girders and slab, the section can behave as II section, so that the neutral axis with respect to out of plane direction flexure can be regarded as major axis. Therefore in-plane flexural mode might govern the free vibration mode. Meanwhile, horizontally curved girders always experience not only bending moments but also torsional moments although the primary load is usually supposed to be gravitational load. The interaction due to bending and torsional moments make the behavior complicated and torsional mode may govern the free vibration mode. In other words, structure can have different dynamic characteristic due to its initial curvature. In this research, using 3-dimensional sell elements, free-vibration analyses are carried out due to initial curvature. The analysis models are assumed to be composite and non-composite and finally natural frequency and eigen mode are discussed.

Improved method of lateral offset calculation for optical waveguide (광도파로의 곡률 반경에 따른 모드특성과 Lateral Offset 변화)

  • 박순룡;김우택;라상호;오범환
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.6
    • /
    • pp.408-412
    • /
    • 1998
  • As the radius of curvature of curved optical waveguide gets smaller, the loss increases at the junction of linear-curved waveguide by the cross sectional mode mismatch. The concept of lateral offset has been used widely to minimize it, and simple method of maximum matching has been efficient for most cases of silica waveguide with low optical confinement and large radius of curvature. Here, we analyzed that the propagation mode characteristics of the lateral offset and propagation mode characteristics of general case with effective index method and Airy function solution. As the normalized frequency varies, mode characteristics changes near the boundary of 1/V=0.7 and the simple matching of gaussian profile might give -35% of error at most. We proposed improved method with a new correction factor to improve the mode mismatch problem of conventional methods for general cases, and showed the convenience and feasibility of this method for the calculation of the lateral offset.

  • PDF

Estimation of Buckling and Ultimate Collapse Behaviour of Stiffened Curved Plates under Compressive Load

  • Park, Joo-Shin;Ha, Yeon-Chul;Seo, Jung-Kwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.37-45
    • /
    • 2020
  • Unstiffened and stiffened cylindrically curved plates are often used in ship structures. For example, they can be found on a deck with a camber, a side shell at the fore and aft parts, and the circular bilge part of a ship structure. It is believed that such cylindrically curved plates can be fundamentally modelled using a portion of a circular cylinder. From estimations using cylindrically curved plate models, it is known that the curvature generally increases the buckling strength compared to a flat plate under axial compression. The existence of curvature is also expected to increase both the ultimate and buckling strengths. In the present study, a series of finite element analyses were conducted on stiffened curved plates with several varying parameters such as the curvature, panel slenderness ratio, and web height and type of stiffener applied. The results of numerical calculations on stiffened and unstiffened curved plates were examined to clarify the influences of such parameters on the characteristics of their buckling/plastic collapse behavior and strength under an axial compression.

Strengthening Effects of Epoxy Mortar Systems on Reinforced Concrete Beams by Flexural Tensile Strength (변성에폭시 모르터 휨인장강도가 단면증대 보에 미치는 영향)

  • 류현희;신영수;정혜교
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.787-790
    • /
    • 2000
  • This paper presents an experimental study on flexural behavior of structural member enlarged with epoxy mortar system. The main test variable is flexural tensile strength. A series of 4 test beams was tested to shoe the corresponding effect of each variables on maximum load capacity, load-deflection and moment-curvature relationship, interface behavior and failure mode. The results show that the flexural tensile strength of retrofitted materials have no relation load-deflection, but to load-strain, and failure mode.

  • PDF

Experimental and numerical study on large-curvature curved composite box girder under hogging moment

  • Zhu, Li;Wang, Jia J.;Zhao, Guan Y.;Huo, Xue J.;Li, Xuan
    • Steel and Composite Structures
    • /
    • v.37 no.2
    • /
    • pp.117-136
    • /
    • 2020
  • Curved steel-concrete composite box girder has been widely adopted in urban overpasses and ramp bridges. In order to investigate its mechanical behavior under complicated and combined bending, shear and torsion load, two large-curvature composite box girders with interior angles of 25° and 45° were tested under static hogging moment. Based on the strain and deflection measurement on critical cross-sections during the static loading test, the failure mode, cracking behavior, load-displacement relationship, and strain distribution in the steel plate and rebar were investigated in detail. The test result showed the large-curvature composite box girders exhibited notable shear lag in the concrete slab and steel girder. Also, the constraint torsion and distortion effect caused the stress measured at the inner side of the composite beam to be notably higher than that of the outer side. The strain distribution in the steel web was approximately linear; therefore, the assumption that the plane section remains plane was approximately validated based on strain measurement at steel web. Furthermore, the full-process non-linear elaborate finite element (FE) models of the two specimens were developed based on commercial FE software MSC.MARC. The modeling scheme and constitutive model were illustrated in detail. Based on the comparison between the FE model and test results, the FE model effectively simulated the failure mode, the load-displacement curve, and the strain development of longitudinal rebar and steel girder with sufficient accuracy. The comparison between the FE model and the test result validated the accuracy of the developed FE model.

Analysis of Dispersion Characteristics of Circumferential Guided Waves and Application to feeder Cracking in Pressurized Heavy Water Reactor (원주 유도초음파의 분산 특성 해석 및 가압중수로 피더관 균열 탐지에의 응용)

  • Cheong, Yong-Moo;Kim, Sang-Soo;Lee, Dong-Hoon;Jung, Hyun-Kyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.4
    • /
    • pp.307-314
    • /
    • 2004
  • A circumferential guided wave method was developed to detect the axial crack on the bent feeder pipe. Dispersion curves of circumferential guided waves were calculated as a function of curvature of the pipe. In the case of thin plate, i.e. infinite curvature, as the frequency increases, the $S_0$ and $A_0$ mode coincide and eventually become Rayleigh wave mode. In the case of pipe, however, as the curvature increases, the lowest modes do not coincide even in the high frequencies. Based on the analysis, a rocking technique using angle beam transducer was applied to detect an axial defect in the bent region of PHWR feeder pipe. Based on the analysis of experimenal data for artificial notches, the vibration modes of each signal were identified. It was found that the notches with the depth of )0% of wall thickness can be detected with the method.

Vibration analysis and optimization of functionally graded carbon nanotube reinforced doubly-curved shallow shells

  • Hammou, Zakia;Guezzen, Zakia;Zradni, Fatima Z.;Sereir, Zouaoui;Tounsi, Abdelouahed;Hammou, Yamna
    • Steel and Composite Structures
    • /
    • v.44 no.2
    • /
    • pp.155-169
    • /
    • 2022
  • In the present paper an analytical model was developed to study the non-linear vibrations of Functionally Graded Carbon Nanotube (FG-CNT) reinforced doubly-curved shallow shells using the Multiple Scales Method (MSM). The nonlinear partial differential equations of motion are based on the FGM shallow shell hypothesis, the non-linear geometric Von-Karman relationships, and the Galerkin method to reduce the partial differential equations associated with simply supported boundary conditions. The novelty of the present model is the simultaneous prediction of the natural frequencies and their mode shapes versus different curvatures (cylindrical, spherical, conical, and plate) and the different types of FG-CNTs. In addition to combining the vibration analysis with optimization algorithms based on the genetic algorithm, a design optimization methode was developed to maximize the natural frequencies. By considering the expression of the non-dimensional frequency as an objective optimization function, a genetic algorithm program was developed by valuing the mechanical properties, the geometric properties and the FG-CNT configuration of shallow double curvature shells. The results obtained show that the curvature, the volume fraction and the types of NTC distribution have considerable effects on the variation of the Dimensionless Fundamental Linear Frequency (DFLF). The frequency response of the shallow shells of the FG-CNTRC showed two types of nonlinear hardening and softening which are strongly influenced by the change in the fundamental vibration mode. In GA optimization, the mechanical properties and geometric properties in the transverse direction, the volume fraction, and types of distribution of CNTs have a considerable effect on the fundamental frequencies of shallow double-curvature shells. Where the difference between optimized and not optimized DFLF can reach 13.26%.