• Title/Summary/Keyword: current-voltage

Search Result 11,641, Processing Time 0.039 seconds

Fault Angle Dependent Resistance of YBCO Coated Conductor with Stainless Steel Stabilizer Layer

  • Du, Ho-Ik;Kim, Min-Ju;Doo, Seung-Gyu;Kim, Yong-Jin;Han, Byoung-Sung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.2
    • /
    • pp.66-69
    • /
    • 2009
  • To manufacture YBCO-coated conductors as superconducting fault current limiters, it is important to conduct researches on their durability. To test their durability, it is necessary to investigate their properties before and after the quench in more severe conditions than in general operating conditions. In this study, their voltage-current and resistance properties were measured before and after a fault current was repetitively applied to them. For the applied voltage, the voltage grades of the YBCO coated conductors were considered. The current amplitude was controlled using protective resistance on an experimental track, and the time and number of applications were fixed to produce the quench occurrence at the fault angles of $0^{\circ}$, $45^{\circ}$, and $90^{\circ}$. The operating conditions of the YBCO coated conductors as the main components of superconducting fault current limiters were determined using their voltage properties. The voltage properties of the YBCO coated conductors that were analyzed in this research will be used as important data for their practical application to superconducting fault current limiters.

ZCS-PWM Boost Converter Dropped Voltage and Current Stress of a Free-Wheeling Diode (환류 다이오드의 전압, 전류스트레스가 강하된 ZCS-PWM Boost Converter)

  • Kim, Myung-O;Kim, Young-Seok;Lee, Gun-Haeng
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.11
    • /
    • pp.540-546
    • /
    • 2005
  • This paper presents a boost circuit topology driving in high - frequency It solves the problem which arised from hard-switching in high-frequency using a period of resonant circuit and operating under the principle of ZCS turn-on and ZCZVS turn-off commutation schemes. In the existing circuit, it has the high voltage and current stress in free- wheeling diode. But in the proposed circuit, it has voltage and current stress which is lower than voltage and current stress of existing circuit with modifing a location of free-wheeling diode. In this paper, it explained the circuit operation of each mode and the waveform of each mode. Also the experiment results compare the voltage and current stress of free-wheeling diode in the existing circuit with the voltage and current stress of that in the proposed circuit. Moreover, it compares and analyzes the proposed circuit's efficiency with the existing circuit's efficiency according to the change of load current.

DC Link Voltage Controller for Three Phase Vienna Rectifier with Compensated Load Current and Duty (부하 전류 및 듀티를 보상한 3상 비엔나 정류기의 출력 전압 제어 기법)

  • Lee, Seung-Tae;Lim, Jae-Uk;Kim, Hag-Wone;Cho, Kwan-Yuhl;Choi, Jaeho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.1
    • /
    • pp.32-39
    • /
    • 2018
  • A new dc link voltage controller for a three-phase Vienna rectifier is proposed in this study. This method uses load current and duty information to control dc link voltage. The load current affects the capacitor current and varies the output voltage. Existing methods do not perfectly consider the load current. By considering load current with duty compensation in the proposed method, the transient response is improved by the load variation regardless of the input voltage. The effectiveness of the proposed method is compared with other control methods when the load changes rapidly using PSIM simulation and experiment.

Analysis on Bus Voltage Sag in Power Distribution System with SFCL according to Interconnected Locations of Small DG (초전도 한류기 적용시 소형 분산전원시스템의 연계 위치에 따른 배전계통의 전압강하 분석)

  • Moon, Jong-Fil;Shon, Jin-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.62 no.4
    • /
    • pp.210-215
    • /
    • 2013
  • This paper analyze the bus voltage sags in the power distribution system with a small scale cogeneration system when the superconducting fault current limiter was introduced. Among the solutions to decrease the short-circuit current considering the locations of the small scale cogeneration system, the superconducting fault current limiter (SFCL) has been announced as one of the promising methods to reduce the fault current because the installation of the small scale cogeneration system which increases the short-circuit current. According to the application locations of the small scale cogeneration system in a power distribution system, it has caused the variations of voltage sag and duration which depends on the change of the short-circuit current, which can make the operation of the protective device deviate from its original set value when the fault occurs. To investigate the voltage sag when a SFCL was applied into a power distribution system where the small scale cogeneration system was introduced into various locations, the SFCL, small scale cogeneration system, and power system are modeled using PSCAD/EMTDC. In this paper, the effects on voltage sags are assessed when the SFCL is installed in power distribution system with various locations of the small scale cogeneration system.

Change of the Characteristics of ZnO Arrester Blocks by Lightning Impulse Current (산화아연형 피뢰기 소자의 뇌충격전류에 의한 특성 변화)

  • Han, Joo-Sup;Song, Jae-Yong;Kil, Gyung-Suk
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.907-909
    • /
    • 1998
  • This paper describes the effect of impulse current on degradation of ZnO blocks. In this study, an impulse current generator which can produce 8/20 [${\mu}s$], 3 [kA] and 4/10 [${\mu}s$], 5 [kA] waveform is designed and fabricated to simulate the lightning impulse current. The residual voltage, reference voltage, and leakage current flowing to the ZnO blocks are observed. The experimental results show that the leakage current increases continuously with the number of applied impulse current, but no significant changes in residual voltage and in operating voltage are observed until the ZnO block is destroyed. Also, it is confirmed that the main factor on degradation of ZnO blocks is rather the total energy applied to ZnO blocks than the peak value of the impulse current.

  • PDF

Analysis on Quench Velocity of SFCL dependent on Source Voltage (전원전압에 따른 초전도 사고전류제한기의 퀜치속도 분석)

  • Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.10
    • /
    • pp.889-894
    • /
    • 2007
  • We investigated the quench velocity of superconducting fault current limiter (SFCL) dependent on the source voltage. $YBa_2Cu_3O_7$ (YBCO) thin film was used as the current limiting element for SFCL. The analysis on the quench velocity of SFCL is essential to determine the capacity of circuit breaker (CB) or coordinate with CB. Generally, the quench velocity of SFCL is related with the short-circuit current. To change the short-circuit current, in this paper, the amplitude of the power source voltage is adjusted. Through the fault current limiting experiments, the quench velocity of SFCL was confirmed to increase fast as the source voltage increased. On the other hand, the peak limited current was shown to increase with steady rate of increase.

Current Control Scheme of High Speed SRM Using Low Resolution Encoder

  • Khoi, Huynh Khac Minh;Ahn, Jin-Woo;Lee, Dong-Hee
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.520-526
    • /
    • 2011
  • This paper presents a balanced soft-chopping circuit and a modified PI controller for a high speed 4/2 Switched Reluctance Motor (SRM) with a 16 pulse per revolution encoder. The proposed balanced soft-chopping circuit can supply double the switching frequency in the fixed switching frequency of power devices to reduce current ripple. The modified PI controller uses maximum voltage, back-emf voltage and PI control modes to overcome the over-shoot current due to the time delay effect of current sensing. The maximum voltage mode can supply a fast excitation current with consideration of the hardware time delay. Then the back-emf voltage mode can suppress the current over-shoot with consideration of the feedback signal delay. Finally, the PI control mode can adjust the phase current to a desired value with a fast switching frequency due to the proposed balanced soft-chopping technology.

Help of Microcontroller on Voltage Control to Reduce Transformer Inrush Current

  • Fard, Ali Asghar Fathollahi
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.1
    • /
    • pp.12-15
    • /
    • 2014
  • At the moment of transformer energization by the supply voltage, a high current called transient inrush current, which may rise to ten times the transformer full load current, could be drawn by the primary winding. This paper discusses a microcontroller circuit with the intention of controlling and limiting the inrush current for a transformer, by the method of ramping up the supply voltage feeding to the transformer primary. Simulations and the experimental results show a significant reduction of inrush current, when the ramping up voltage is applied to the three-phase transformer load. The inrush current could be almost eliminated if the correct switching step rate is chosen.

A Study on the Voltage Drop of Induction Generator along the Rotor Shape (회전자 형상에 따른 유도발전기 전압강하에 대한 연구)

  • Kim, Jong-Gyeum
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.2
    • /
    • pp.62-66
    • /
    • 2015
  • Induction generator is easy to durability and maintenance than the synchronous generator. So, recently Induction generator has been widely applied to small-scale hydroelectric power plant. When the rotor is operating faster than synchronous speed, induction machine can generate electric power. Induction generator has a large inrush currents, such as the starting current of the induction motor. Induction motor has been designed a variety of rotor shape in order to reduce starting current. Since the occurrence of high inrush current cause a voltage drop to the system, it will need to reduce possible. Because the starting current of the squirrel-cage induction motor varies in accordance with the rotor shape, it is necessary to analyze the magnitude of inrush current in order to apply to the generator. In this study, we analyzed the inrush current and the voltage drop caused in accordance with the rotor shape of 1500kw induction generator.

Study of the Method of Calculating Maximum Voltage for Flux-Weakening Operation of Interior Permanent Magnet Synchronous Motor (매입형 영구자석 동기전동기의 약계자 제어를 위한 최대전압 선정에 관한 연구)

  • Kim, Jang-Mok;Kim, Su-Yeol;Ryu, Ho-Seon;An, Yong Ho;Yoon, Gi Gab;Lim, Ik-Hun;Jun, Hyang-Sig
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.2
    • /
    • pp.63-69
    • /
    • 2000
  • The constraint conditions are the stator voltage and the stator current to operate the motor in the flux weakening region. The maximum current is limited by the inverter current rating and the machine thermal rating. Given DC link voltage to control the motor in the flux weakening the maximum voltage is determined by considering PWM strategy, dead time, voltage drop of the inverter switching device, and the margin of the voltage for current forcing. In this paper, the new method to determine the available maximum voltage is derived by the quantitative method and by considering the factors of the voltage drop. The proposed method to determine the maximum voltage is very useful to improve the stability of the motor system and to enlarge the speed operation region in the flux weakening operation. Therefore the utility of the maximum voltage is increased.

  • PDF