• Title/Summary/Keyword: current-fed full bridge

Search Result 33, Processing Time 0.018 seconds

Study on 3-Phase Isolated PFC Converter for the Electric Vehicle Charger (전기자동차 충전기를 위한 3상 절연형 PFC 컨버터의 회로 연구)

  • Kim, Yoon-Jae;Lee, Jun-Young;Lee, Il-Oun;Lee, Byung-Kwon;Choi, Seung-Won;Hong, Young-Gun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.5
    • /
    • pp.404-413
    • /
    • 2017
  • This paper suggests an isolated PFC converter for electric vehicle (EV) chargers with wide-output voltage range. The proposed converter is based on voltage-fed full-bridge structure. All the harmonic and output controls are performed by secondary and primary switches are only operated under a fixed frequency with 50% duty-ratio. In addition, harmonic modulation technique is adopted to obtain a near unity power factor without input current monitoring. The feasibility of the proposed charger has been verified with a 10-kW prototype.

High Frequency and High Luminance AC-PDP Sustaining Driver

  • Choi Seong-Wook;Han Sang-Kyoo;Moon Gun-Woo
    • Journal of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.73-82
    • /
    • 2006
  • Plasma display panels (PDPs) have a serious thermal problem, because the luminance efficiency of a conventional PDP is about 1.5 1m/W and it is less than $3\~5\;lm/W$ of a cathode ray tube (CRT). Thus there is a need for improving the luminance efficiency of the PDP. There are several approaches to improve the luminance efficiency of the PDP and we adopted a driving PDP at high frequency range from 400kHz up to over 700kHz. Since a PDP is regarded as an equivalent inherent capacitance, many types of sustaining drivers have been proposed and widely used to recover the energy stored in the PDP. However, these circuits have some drawbacks for driving PDPs at high frequency ranges. In this paper, we investigate the effect of the parasitic components on the PDP itself and on the driver when the reactive energy of the panel is recovered. Various drivers are classified and evaluated based on their suitability for high frequency drivers. Finally, a current-fed driver with a DC input voltage bias is proposed. This driver overcomes the effect of parasitic components in the panel and driver. It fully achieves a ZVS of all full-bridge switches and reduces the transition time of the panel polarity. It is tested to validate the high frequency sustaining driver and the experimental results are presented.

A Study on High Frequency Sustaining Driver for Improving Luminance Efficiency of AC-PDP (AC-PDP의 광효율 향상을 위한 고주파 구동회로에 관한 연구)

  • Choi, Seong-Wook;Han, Sang-Kyoo;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.380-384
    • /
    • 2005
  • Plasma display panel (PDP) has a serious thermal problem, because the luminance efficiency of the conventional PDP is about 1.5 lm/W and it is less than $3{\sim}5$ lm/W of cathode ray tube (CRT). Thus there is a need for improving the luminance efficiency of the PDP There are several approaches to improve the luminance efficiency of the PDP and we adopt the driving PDP at high frequency range from 400 kHz up to over 700 kHz. Since a PDP is regarded as an equivalent inherent capacitance, many types of sustaining drivers have been proposed and widely used to recover the energy stored in the PDP. However, these circuits have some drawbacks for driving PDP at high frequency range. In this paper, we investigate the effect of the parasitic components of PDP itself and driver when the reactive energy of panel is recovered. Various drivers are classified and evaluated whether it is suitable for high frequency driver, and finally current-fed type with do input voltage biased is proposed. This driver overcomes the effect of parasitic component in panel and driver and fully achieves ZVS of all full-bridge switches and reduces the transition time of the panel polarity.

  • PDF