• Title/Summary/Keyword: current unbalance

Search Result 263, Processing Time 0.026 seconds

Characteristics Analysis of 3-phase Induction Generator at the Unbalanced Load Operation (불평형 부하 운전시 3상 유도발전기 특성 해석)

  • Kim, Jong-Gyeum
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.3
    • /
    • pp.123-128
    • /
    • 2007
  • Hydro power supplies no pollution energy, mainly induction generator has been applied at the small capacity power station. The generating power of small hydro-electric power station connects on the 22.9kV distribution system or low voltage system in the case of three-phase four-wire supply system. There are side effects of various kinds in the 3-three phase 4-wire distribution system mixing 1-phase load and 3-phase load. This system generates the voltage unbalance by unbalanced load operating condition. They have various serious effects on generator and connection system. In this paper, we analyzed what kind of operation characteristic are happened in the induction generator by customer load variation at the 3-three phase 4-wire distribution system.

The measurement & Analysis of Voltage Unbalance Factor at Three Phase Four Wire Load System (3상 4선식 부하설비의 전압 불평형율 측정 및 분석)

  • Kim, Jong-Gyeum;Park, Young-Jin;Lee, Dong-Ju;Lee, Hwa-Su;Lee, Eun-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.15-17
    • /
    • 2004
  • Most of LV customer has been composed the 3-phase four wire system distribution system which is supplying simultaneously at the 1-phase & 3-phase load. In this system, the composition of the power apparatus system is simple rather than conventional separation mode of the 1-phase & 3-phase, But due to uneven load unbalance or unclean power quality, various kinds such as derating or power losses become an issue. In this paper, we measured and analyzed voltage and current waveform in the field, compared with internationally allowable voltage unbalance limits.

  • PDF

Series Active Power Filters for Source Voltage Unbalance Compensation and Power Factor Correction (전원 불평형과 역률을 보상하는 직렬형 능동전력필터)

  • Jang, Jeong-Ik;Lee, Dong-Choon;Seok, Jul-Ki
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.498-500
    • /
    • 2005
  • This paper presents a unified control scheme for series-type active power filters combined with shunt passive filters for the source voltage unbalance compensation and the power factor correction simultaneously. The power factor correction is achieved by controlling the amplitude of reactive power current in a series filter as zero in a synchronously rotating reference frame. The proposed algorithm successfully compensates the source voltage unbalance and the power factor. The validity of the proposed scheme has been verified by simulation for a 3-kVA hybrid active power filter system.

  • PDF

The measurement & Analysis of Voltage Unbalance Factor at LV Customer of Three-Phase Four-Wire System (3상 4선식 저압 수용가의 전압 불평형율 측정분석)

  • Kim, Jong-Gyeum;Park, Young-Jin;Lee, Eun-Woong
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.43-47
    • /
    • 2004
  • Most of LV customer has been composed the 3-phase four wire system distribution system which is supplying simultaneously at the 1-phase & 3-phase load. In this system, the composition of the power apparatus system is simple rather than conventional separation mode of the 1-phase & 3-phase, But due to uneven load unbalance or unclean power quality, various kinds such as do-rating or power losses become an issue. In this paper, we measured and analyzed voltage and current waveform in the field, compared with internationally allowable voltage unbalance limits.

  • PDF

Analysis on the Harmonic Characteristics of Nonlinear Load operated by Unbalance Voltage (불평형 전압 공급시 비선형 부하의 고조파 특성 해석)

  • Kim, Jong-Gyeum;Lee, Eun-Woong;Lee, Dong-Ju;Lee, Hwa-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.696-698
    • /
    • 2003
  • Most of the loads in industrial power distribution systems are balanced and connected to three wires power systems. However, in the user power distribution systems, most of the loads are single & three phase and unbalanced, generating a large amount of non-characteristic harmonics. With the advent of power electronics and proliferation of non-linear loads in industrial power applications, power harmonics and their effects on power quality are a topic of concern. Harmonics by the unbalance voltage and non-linear loads, cause the increase of machine loss and heating. In order to allow current harmonic compensation, a filter must be installed. This paper describes the performance of passive filter under the voltage unbalance and non-linear load.

  • PDF

Unbalanced line fault study for inductive disturbance analysis of distribution system (배전계통 유도장해 해석을 위한 불평형 선로 고장계산)

  • Ryu, J.H.;Kim, K.J.;Rhim, C.H.;Park, H.K.;Kim, T.K.;Kim, Y.H.;Choi, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.154-157
    • /
    • 2003
  • The exicting short circuit analysis calculate the current with the balance system and unbalance fault impedance. That method deal with only bus fault with the consequence that line fault study is irrational. This paper propose the line fault, shunt unbalance and series unbalance analysis method using template concept that is one of advantages for OOP(Object-Oriented Programming). This method is possible to use for calculating inductive distrubance.

  • PDF

Fault Diagnosis Device for Fire Prevention of the Resistance Heating Type three-Phase Electric Heater (3상 저항가열식 전기히터의 화재예방을 위한 결함 진단장치)

  • Lee, Mun-Hyung;Kim, Chan-O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.11
    • /
    • pp.1669-1674
    • /
    • 2017
  • In this study, We have discussed the development of a diagnostic device to detect and prevent electrical fire due to the arc caused by contact failure and partial disconnection at the connection part of the three-phase electric heater wiring used in the industrial field. The arc caused by contact failure and partial disconnection at the connection part of the electric heater shows a change in the current effective value. Therefore, it is possible to determine whether there exists a defect by analyzing the current unbalance factor and the number of current fluctuations with the diagnostic apparatus. The three-phase unbalanced heater is considered to be capable of determining defects through periodic measurement and trend analysis of the current unbalance factor. It is also expected that this device can be used not only for electric heaters but also for detection of defects in wiring and connections of electrical equipment having a characteristic of constant load current.

Fatigue Analysis of Balance Shaft Housing Considering Non-linear Force Condition (비선형 하중 조건을 고려한 밸런스 샤프트 하우징의 내구평가)

  • Lee, Dong-Won;Kim, Chan-Jung;Bae, Chul-Yong;Kwon, Sung-Jin;Lee, Bong-Hyun;Kim, Dong-Chul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.393-398
    • /
    • 2007
  • Balance shaft has a key role in reducing a engine vibration in a vehicle and widely applied for current models. Since balance shaft module consists many sub-component and each part had its own operational characteristics, some different analysis background should be integrated into one sub-part in balance shaft module and this is the main obstacles in making a design process. Moreover, the balancing shaft rotating in high speed and such condition requires large safety factors in a design process owing to a lot of unexpected problems with the overwhelming rotation. Balance shaft is the core-component generating the intended unbalance as well as canceling the unbalance force or moment by the engine module. So, the balance shaft should meet the high fatigue resistance not to mention of NVH performance. In this paper, a design strategy focused on balance shaft is developed to build a optimal model considering a engine vibration. Putting the unbalance mass distribution as main design parameter, some candidate model is verified with structural and fatigue analysis most appropriate model is proposed here.

  • PDF

Compensating for the Neutral-Point Potential Variation in Three-Level Space-Vector PWM Method (3-레벨 인버터 공간벡터 변조시의 중성점 전위 변동 보상법)

  • Seo Jae Hyeong;Kim Kwang Seob;Bang Sang Seok;Choi Chang Ho
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.475-478
    • /
    • 2001
  • In performing the three-level SVPWM, it is nearly impossible to control the neutral-point potential exactly to the half of the dc-link voltage at all times. Therefore the inverter would produce an erroneous output voltage by this voltage unbalance. So the voltage unbalance has to be compensated in doing PWM, when the voltage unbalance occurs whether it is small or large, to make the inverter output voltage follow the reference voltage exactly the same. In this paper, a new compensating method for the neutral-point potential variation in a three-level inverter space vector PWM (SVPWM) is presented. By using the proposed method, the output voltage of the inverter can be made same as the reference voltage and thus the current and torque ripple of the inverter driven motor can be greatly improved even if the voltage unbalance is quite large. The proposed method is verified experimentally with a 3-level IGBT inverter.

  • PDF

The Measurement & Analysis of Voltage Unbalance Factor at LV Customer of Three-Phase Four-Wire System (3상 4선식 저압 수용가의 전압 불평형률 측정 분석)

  • Kim, Jong-Gyeoum;Park, Young-Jeen
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.6
    • /
    • pp.91-99
    • /
    • 2004
  • Most of LV customer have applied the 3-phase four wire system distribution system because it has advantage of supplying both of 1-phase at 3-phase loads simultaneously. Due to its structural simplicity, it is more convenient for use rather than the conventional separated scheme. But once in a while uneven load unbalance or unclean power quality lead some problems such as do-rating or power losses. In this paper, voltage and current waveform in the actual fields have been measured and analyzed in relation with intermationally allowable voltage unbalance limits.