• Title/Summary/Keyword: current turbine

Search Result 457, Processing Time 0.027 seconds

Design, test and numerical simulation of a low-speed horizontal axis hydrokinetic turbine

  • Tian, Wenlong;Mao, Zhaoyong;Ding, Hao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.6
    • /
    • pp.782-793
    • /
    • 2018
  • A small-scale horizontal axis hydrokinetic turbine is designed, manufactured and studied both experimentally and numerically in this study. The turbine is expected to work in most of China's sea areas where the ocean current velocity is low and to supply electricity for remote islands. To improve the efficiency of the turbine at low flow velocities, a magnetic coupling is used for the non-contacting transmission of the rotor torque. A prototype is manufactured and tested in a towing tank. The experimental results show that the turbine is characterized by a cut-in velocity of 0.25 m/s and a maximum power coefficient of 0.33, proving the feasibility of using magnetic couplings to reduce the resistive torque in the transmission parts. Three dimensional Computational Fluid Dynamics (CFD) simulations, which are based on the Reynolds Averaged Navier-Stokes (RANS) equations, are then performed to evaluate the performance of the rotor both at transient and steady state.

The Wake Characteristics of Tidal Current Power Turbine (수평축 조류발전 후류 특성 및 발전 효율 분석)

  • Jo, Chulhee;Lee, Kanghee;Lee, Junho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.163.2-163.2
    • /
    • 2011
  • Due to global warming, the need to secure an alternative resource has become more important nationally. Due to the high tidal range of up to 9.7m on the west coast of Korea, numerous tidal current projects are being planned and constructed. To extract a significant quantity of power, a tidal current farm with a multi-arrangement is necessary in the ocean. The rotor, which initially converts the energy, is a very important component because it affects the efficiency of the entire system, and its performance is determined by various design variables. The power generation is strongly dependent on the size of the rotor and the incoming flow velocity. However, the interactions between devices also contribute significantly to the total power capacity. Therefore, rotor performance considering the interaction problems needs to be investigated for generating maximum power in a specific field. This paper documents the characteristics of wake induced by horizontal axis tidal current power turbine.

  • PDF

Performance and Cavitation Analysis on Tidal Current Turbine for Low Water Level Channel

  • Chen, Chengcheng;Choi, Young-Do
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.5
    • /
    • pp.60-66
    • /
    • 2014
  • Most tidal current turbine designs are focused on medium and large scale for deep sea, less attention is paid in low water level channel, such as the region around the islands and costal sea. This study is to develop a horizontal axis tidal current turbine rotor blade which is applicable to low water level island region in southwest coastal region of Korea. In this study, the hydrofoil NACA63-415 and NACA63-817 are both adopted to analyze. The blade using NACA63-817 showed the higher maximum power coefficient and good performance at small TSR (Tip Speed Ratio), which gives the blade more advantages in operating at lower water level channel, where is characterized by the fast-flowing water. The cavitation pattern of hydrofoil is predicted by the CFD analysis and verified that the NACA63-817 is the appropriate hydrofoil in the test site of tidal current resource and the hydrofoil showed considerable performance in avoiding cavitation.

Simulation for Voltage Variations of a Grid-connected Wind Turbine Generation System by Simulink (Simulink에서 계통연계 풍력발전시스템의 전압변동 시뮬레이션)

  • Ahn Duck-Keun;Ro Kyoung-Soo
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.11
    • /
    • pp.589-595
    • /
    • 2004
  • This paper presents a modeling and simulation of a grid-connected wind turbine generation system with respect to wind variations, starting of large induction motor and three-phase fault in the system, and investigates voltage variations of the system for disturbances. It describes the modeling of the wind turbine system including the drive train model, induction generator model, and grid-interface model on MATLAB/Simulink. The simulation results show the variation of the generator torque, the generator rotor speed, the pitch angle, terminal voltage, system voltage, fault current, and real/reactive power output, etc. Case studies demonstrate that the pitch angle control is carried out to achieve maximum power extraction for wind speed variations, starting of a large induction motor causes a voltage sag due to a large starting current, and a fault on the system influences on the output of the wind turbine generator.

Hydraulic Efficiency measurement of small turbine and example of it's analysis (소수력수차의 효율측정과 분석사례)

  • Kim, Eung-Tae;Jung, Yong-Chea;Park, Jang-Won
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.748-756
    • /
    • 2005
  • The Purpose of this writing is a presentation of small turbine efficiency measuring method, applicable new technology, and several analysis result for real turbine. Measurement methods of hydraulic efficiency written in here are extracted from small turbine applicable international code(IEC, ASME). It includes brief synopsis of 'Current meter method' and 4 other methods and ASFM as a new small turbine applicable technology. And several analysis of test result are for recently performed domestic small turbine result in korea. Through this presentation of extracted code, I hope that it make other small turbine concerner be familiar to perform an efficiency test. for small turbine. And, some analysis of that, make other to feel the importance of efficiency test.

  • PDF

Critical Limits of Commercial Diving on the Construction of Tidal Current Power in Jangjuk Channel (장죽수로 조류발전건설시 작업특성에 따른 산업잠수 작업한계)

  • Kim, Won-Seok
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.25 no.3
    • /
    • pp.733-742
    • /
    • 2013
  • The Korea has significant tidal current energy resources, but it is so hard to work underwater for tidal turbine installation. Therefore commercial diving work is very important for tidal current generator. Also, Jangjuk channel is vary famous as proper area to generate tidal current energy. Nevertheless, no one is studied about characteristics of commercial diving works with installation of tidal current generator. The purpose of this study is to introduce commercial diving with work types and investigate critical limits of diving working under the conditions, which are working only to minutes at slack tide during the neap tide. As the results, work types are five as like mooring installation, OMAS(Offshore Maintenance Access System), support structure installation, cable and turbine installation. Here, the original construction period is expected about 4 months, but the construction take 18 months to complete. The cause of extends construction period is insufficiency of researching tidal current conditions at the site and ignorance of slack tide which need to secure diving working time. Total diving working times are 110th during 18 months, the highest percentage of diving times is turbine installation about 43.6 %, and cable, mooring installation and support structure construction are 27.3 %, 15.5 %, 13.6 %, respectively. On the basis of this study, estimation of times of commercial diving is possible with work types of tidal current power, and has a significance as basic data to determining construction period.

PHLIS-Based Characteristics Analysis of a 2 MW Class Tidal Current Power Generation System (PHILS 기반 2 MW급 조류발전시스템 특성 분석)

  • Go, Byeong Soo;Sung, Hae Jin;Park, Minwon;Yu, In Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.8
    • /
    • pp.665-670
    • /
    • 2014
  • In this paper, characteristics of a tidal current power generation system are analysis using power hardware-in-the-loop simulation (PHILS). A 10 kW motor generator set is connected to the real grid through a fabricated 10 kW back to back converter. A power control scheme is applied to the back to back converter. A 2 MW class tidal current turbine is modeled in real time digital simulator (RTDS). Generating voltage and current from the 10 kW PMSG is applied to a 2 MW class tidal current turbine in the RTDS using PHILS. The PHILS results depict the rotation speed, power coefficient, pitch angle, tip-speed ratio, and output power of tidal current turbine. The PHILS results in this paper can contribute to the increasing reliability and stability of the tidal current turbines connected to the grid using PHILS.

The Design & Manufacture and Characteristic Analysis of Eddy Current Sensor for Bolt Hole Defect Evaluation (볼트 홀 결함 평가용 와전류 센서 설계제작 및 특성분석)

  • Ahn, Y.S.;Gil, D.S.;Park, S.G.
    • Journal of Power System Engineering
    • /
    • v.15 no.4
    • /
    • pp.37-41
    • /
    • 2011
  • This paper introduces the special eddy current sensor and its characteristic for bolt hole defect evaluation in gas turbine rotor. In the past, Fluorescent penetration inspection method was used for qualitative defect evaluation in gas turbine rotor bolt hole. This method can defect the bolt hole defect but can not evaluate the defect size. Nowadays, eddy current method is used quantitative defect evaluation due to advanced sensor design technology. And eddy current method is more time and cost saving than the old method. We developed bolt shape eddy current sensor for the rotor bolt hole defect detection and evaluation. The eddy current sensor moves to the bolt hole guided by screw nut and detects the defect on the bolt hole. The bolt hole mock-up and artificial defects were made and used for the signal detection & resolution analysis of eddy current sensor. The results show that signal detection capability is enough to detect 0.2 mm depth defect. And the resolution capability is enough to differentiate 02, 0.5, 1.0 and 2.0 mm depth defect.

Development of 500kW Tidal Current Energy Converter and Uldolmok Field Test (500kW 조류력 발전장치 개발 및 울돌목 실증시험)

  • Sim, Wooseung;Choe, Ickhung;Lee, Kyuchan;Kim, Haiwook;Bae, Jonggug;Min, Kehsik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.159.2-159.2
    • /
    • 2011
  • Hyundai Heavy Industries has developed a tidal current energy converter utilizing the accumulated technology as the world largest constructor for ship and offshore structures. The model has two sets of turbines in both ends in order to utilize the bi-directional current flows in flood and ebb tide. The torque produced by turbine in tidal current is directly delivered to generator along the horizontal axis, in which the turbine, gear, generator, gear and turbine are connected successively. The manufactured model for field test has the turbine diameter of 5 meters to produce the maximum power of 500kW at maximum current speed of 5m/s. The technical verification of tidal power converter was performed by means of small scale model test in towing tank as well as field test at the Strait of Uldolmok located in Jindo of Jeollanamdo province. Field test was performed by mounting the tidal current converter on the SEP(Self Elevating Platform) which could lower the 4 vertical legs on the seabed and could elevate platform over the water surface using the hydraulic power for itself. The field test performed for a month shows that power output is similar or larger compared with the expected one in design stage. This paper presents the development of tidal current energy converter and real sea field test by Hyundai Heavy Industries. This project has finished successfully and provided the technical advance toward commercial services for tidal current power generation in the south-west region in Korea.

  • PDF