• Title/Summary/Keyword: current turbine

Search Result 461, Processing Time 0.025 seconds

Efficiency Assessment of Turbine for Tidal Current Power Plant by In-Field Experimental Test (현장계측에 의한 조류 발전용 수차의 효율 평가)

  • Han, Sang-Hun;Lee, Kwang-Soo;Yum, Ki-Dai;Park, Woo-Sun;Park, Jin-Soon;Yi, Jin-Hak
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.517-520
    • /
    • 2006
  • The Korean peninsula has a number of coastal sites where the rhythmic rising and lowering of water surface due to tides results in strong tidal current. The kinetic energy of these currents can be efficiently exploited by use of tidal current turbines. The pilot tidal current power plant is to be constructed at the Uldolmok narrow channel between J info and Haenam, Our ins next Year, and extensive coastal engineer ing research works have been carried out. This paper describes and analyzes some observation results of field test about the efficiency of Helical turbine for tidal current power plant. The efficiency of turbine, which is diameter 2.2m and height 2.5m, is evaluated meximum RPM, torque, and current velocity. The tested turbines had the maximum efficiencies of the bounds of 25 to 35% in the current velocity range between 1.4 and 2.6 m/s. This result shows that the pilot tidal current power plant needs three helical turbines with diameter 3.0m and height 3.6m to produce electric power 500kW.

  • PDF

Finite Element Analysis of Power Cables for Wind Turbine Application (전자장해석을 이용한 풍력발전용 전력 케이블의 전자기적 고찰)

  • Kim, Ji-Hyun;Cho, Sung-Ho;Lee, In-Woo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.257-260
    • /
    • 2006
  • This paper presents electromagnetic finite element analysis of power cables for wind turbine application. Eddy current losses are calculated due to high currents along metallic part, and dielectric strength on power cables is investigated for case study, which suggests the optimal cabling configuration for wind turbine construction.

  • PDF

A Study on Power Performance of a 1kW Class Vane Tidal Turbine

  • Yang, Changjo;Nguyen, Manh Hung;Hoang, Anh Dung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.2
    • /
    • pp.143-151
    • /
    • 2015
  • Recently, tidal current energy conversion is a promising way to harness the power of tides in order to meet the growing demands of energy utilization. A new concept of tidal current energy conversion device, named Vane Tidal Turbine (VTT), is introduced in this study. VTT has several special features that are potentially more advantageous than the conventional tidal turbines, such as propeller type tidal turbines. The purpose of this study on VTT is to analyze the possibility of extracting the hydrokinetic energy of tidal current and converting it into electricity, and evaluate the performance of turbines for various numbers of blades (six, eight and twelve) using Computational Fluid Dynamics (CFD). At various tip-speed ratios (TSR), the six-bladed turbine obtains the highest power and torque coefficients, power efficiency is up to 28% at TSR = 1.89. Otherwise, the twelve blade design captures the smallest portion of available tidal current energy at all TSRs. However, by adding more blades, torque extracted from the rotor shaft of twelve-bladed turbine is more uniform due to the less interrupted generation of force for a period of time (one revolution).

Flow-Turbine Interaction CFD Analysis for Performance Evaluation of Vertical Axis Tidal Current Turbines (II) (수직축 조류 터빈 발전효율 평가를 위한 유동-터빈 연동 CFD 해석 (II))

  • Yi, Jin-Hak;Oh, Sang-Ho;Park, Jin-Soon;Lee, Kwang-Soo;Lee, Sang-Yeol
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.73-78
    • /
    • 2013
  • CFD (computational fluid dynamics) analyses that considered the dynamic interaction effects between the flow and a turbine were performed to evaluate the power output characteristics of two representative vertical-axis tidal-current turbines: an H-type Darrieus turbine and Gorlov helical turbine (GHT). For this purpose, a commercial CFD code, Star-CCM+, was utilized, and the power output characteristic were investigated in relation to the scale ratio using the relation between the Reynolds number and the lift-to-drag ratio. It was found that the power coefficients were significantly reduced when the scaled model turbine was used, especially when the Reynolds number was lower than $10^5$. The power output characteristics of GHT in relation to the twisting angle were also investigated using a three-dimensional CFD analysis, and it was found that the power coefficient was maximized for the case of a Darrieus turbine, i.e., a twisting angle of $0^{\circ}$, and the torque pulsation ratio was minimized when the blade covered $360^{\circ}$ for the case of a turbine with a twisting angle of $120^{\circ}$.

A Study on the Fault Current of Distribution System according to Connection of Wind Turbine Generation Grid-Connected Transformer (풍력발전 계통연계 변압기의 결선에 따른 배전계통의 고장전류에 관한 연구)

  • An, Hae-Joon;Ro, Kyoung-Soo;Kim, Hyun-Goo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.369-371
    • /
    • 2007
  • This study suggests a modeling of grid-connected wind turbine generation system that has induction generator, and aims to perform simulations for outputs by the variation of actual wind speed and for fault current of wind generation system by the transformer winding connection. This study is implemented by matlab&simulink. The simulation shall be performed by assuming single line to ground fault generated in the system. Generator power, generator rotor speed, generator terminal current and fault current shall be observed following the performance of simulation. The fault current change will be dealt through the simulation results for fault current of wind generation system following the grid-connected transformer winding connection and the simulation result by the transformer neutral ground method.

  • PDF

Performance prediction of horizontal axis marine current turbines

  • Bal, Sakir;Atlar, Mehmet;Usar, Deniz
    • Ocean Systems Engineering
    • /
    • v.5 no.2
    • /
    • pp.125-138
    • /
    • 2015
  • In this study, hydrodynamic performance of a 400 mm diameter horizontal axis marine current turbine model was tested in a cavitation tunnel with 1.21 m x 0.8 m cross-section for over a range of tip speed ratios. Torque and thrust data, as well as cavitation visualizations, for certain operating conditions were acquired. Experimental results indicated that the turbine can be exposed to significant amount of sheet and cloud cavitation over the blades along with vortex cavitation at the blade tips. Inception and distribution of cavitation along the blades of the model turbine were then modelled numerically for design operating conditions using a vortex lattice method. The method was also applied to a turbine tested previously and obtained results were compared with the data available. The comparison between simulation results and experimental data showed a slight difference in terms of span-wise extent of the cavitation region. The cloud and tip vortex cavity observed in experiments cannot be modelled due to the fact that the VLM lacks the ability to predict such types of cavitation. Notwithstanding, the use of such prediction methods can provide a reasonably accurate approach to estimate, therefore take the hydrodynamic effects of cavitation into account in design and analysis of marine current turbines.

Efficiency of Marine Hydropower Farms Consisting of MultipleVertical Axis Cross-Flow Turbines

  • Georgescu, Andrei-Mugur;Georgescu, Sanda-Carmen;Cosoiu, Costin Ioan;Alboiu, Nicolae
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.150-160
    • /
    • 2011
  • This study focuses on the Achard turbine, a vertical axis, cross-flow, marine current turbine module. Similar modules can be superposed to form towers. A marine or river hydropower farm consists of a cluster of barges, each gathering several parallel rows of towers, running in stabilized current. Two-dimensional numerical modelling is performed in a horizontal cross-section of all towers, using FLUENT and COMSOL Multiphysics. Numerical models validation with experimental results is performed through the velocity distribution, depicted by Acoustic Doppler Velocimetry, in the wake of the middle turbine within a farm model. As long as the numerical flow in the wake fits the experiments, the numerical results for the power coefficient (turbine efficiency) are trustworthy. The overall farm efficiency, with respect to the spatial arrangement of the towers, was depicted by 2D modelling of the unsteady flow inside the farm, using COMSOL Multiphysics. Rows of overlapping parallel towers ensure the increase of global efficiency of the farm.

Design and Performance Test of Savonius Tidal Current Turbine with CWC (사보니우스형 조류발전 터빈의 설계 및 회류수조 실험을 통한 성능평가)

  • Jo, Chul-Hee;Lee, Jun-Ho;Rho, Yu-Ho;Ko, Kwang-Oh;Lee, Kang-Hee
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.37-41
    • /
    • 2012
  • Due to global warming, the need to secure alternative resources has become more important nationally. Because of the very strong current on the west coast, with a tidal range of up to 10 m, there are many suitable sites for the application of TCP (tidal current power) in Korea. In the southwest region, a strong current is created in the narrow channels between the numerous islands. A rotor is an essential component that can convert tidal current energy into rotational energy to generate electricity. The design optimization of a rotor is very important to maximize the power production. The performance of a rotor can be determined using various parameters, including the number of blades, shape, sectional size, diameter, etc. There are many offshore jetties and piers with high current velocities. Thus, a VAT (vertical axis turbine) system, which can generate power regardless of flow direction changes, could be effectively applied to cylindrical structures. A VAT system could give an advantage to a caisson-type breakwater because it allows water to circulate well. This paper introduces a multi-layer vertical axis tidal current power system. A Savonius turbine was designed, and a performance analysis was carried out using CFD. A physical model was also demonstrated in CWC, and the results are compared with CFD.

Performance Measurement of the Eddy Current Heat Generator with Different Array of Permanent Magnets (서로 다른 자석 배열을 가지는 와전류 열원화 장치의 성능 측정)

  • Yun, Teak-Han;Son, Young-Woo;Lee, Jang-Ho
    • New & Renewable Energy
    • /
    • v.9 no.1
    • /
    • pp.17-24
    • /
    • 2013
  • Eddy Current is one of ways to make heat using rotational energy of wind turbine rotor. Four difference arrays of permanent magnets around rotor surface are used to generate heat using eddy current in this study. For the evaluation of heating performance, new test rig is prepared to measure water flow and temperatures in the inlet and outlet of the eddy current heat generator. In the test, torque and rotational speed are also measured in the motor driven system, and evaluated if the torque is matched with it of wind turbine rotor or not. It will be shown that the eddy current heat generator can be applied to real urban wind energy systems in this study.

Analysis of Helical Turbine Characteristics for Tidal Current Power Plant (조류발전용 헬리컬 터빈의 특성치 분석)

  • Han, Sang-Hun;Lee, Kwang-Soo;Yum, Ki-Dae;Park, Woo-Sun;Park, Jin-Soon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.4
    • /
    • pp.301-307
    • /
    • 2009
  • The Korean peninsula has a number of coastal sites where the rhythmic rising and lowering of water surface due to tides results in strong tidal current. The kinetic energy of these currents can be efficiently exploited by use of tidal current turbines. This paper investigates the characteristics of helical turbine based on in-field test. The experimental frame was constructed at the Uldolmok narrow channel between Jindo and Haenam and installed the helical turbine of diameter 2.2 m and height 2.5 m. 3-blade turbine had the maximum efficiencies of about 30% in the current velocity range between 1.5 and 2.3 m/s and 6-blade turbine han the maximum efficiencies of about 25%. The efficiency was constant with the current velocity. TSRs of 3-blade and 6 blade turbines were observed as 2.4 and 1.9 respectively.