• Title/Summary/Keyword: current signal

Search Result 2,697, Processing Time 0.028 seconds

Finite Element Analysis for Eddy Current Signal of Aluminum Plate with Surface Breaking Crack (알루미늄 평판의 표면결함에 대한 와전류 신호의 유한요소해석)

  • Lee Joon-Hyun;Lee Bong-Soo;Lee Min-Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.10 s.241
    • /
    • pp.1336-1343
    • /
    • 2005
  • The detection mechanism of the flaw for the nondestructive testing using eddy current is related to the interaction of the induced eddy currents in the test specimen with flaws and the coupling of these interaction effects with the moving test probe. In this study, the two-dimensional electromagnetic finite element analysis(FEM) fur the eddy current signals of the aluminum plate with different depth of surface cracks is described and the comparison is also made between experimental and predicted signals analyzed by FEM. In addition, the characteristics of attenuation of the eddy current density due to the variation of the depth of a conductor are evaluated. The effective parameters for the application of eddy current technique to evaluate surface cracks are discussed by analyzing the characteristics of the eddy current signals due to the variation of crack depths.

Diminution of Current Measurement Error in Vector Controlled AC Motor Drives

  • Jung Han-Su;Kim Jang-Mok;Kim Cheul-U;Choi Cheol;Jung Tae-Uk
    • Journal of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.151-159
    • /
    • 2005
  • The errors generated from current measurement paths are inevitable, and they can be divided into two categories: offset error and scaling error. The current data including these errors cause periodic speed ripples which are one and two times the stator electrical frequency respectively. Since these undesirable ripples bring about harmful influences to motor driving systems, a compensation algorithm must be introduced to the control algorithm of the motor drive. In this paper, a new compensation algorithm is proposed. The signal of the integrator output of the d-axis current regulator is chosen and processed to compensate for the current measurement errors. Usually the d-axis current command is zero or constant to acquire the maximum torque or unity power factor in the ac drive system, and the output of the d-axis current regulator is nearly zero or constant as well. If the stator currents include the offset and scaling errors, the respective motor speed produces a ripple related to one and two times the stator electrical frequency, and the signal of the integrator output of the d-axis current regulator also produces the ripple as the motor speed does. The compensation of the current measurement errors is easily implemented to smooth the signal of the integrator output of the d-axis current regulator by subtracting the DC offset value or rescaling the gain of the hall sensor. Therefore, the proposed algorithm has several features: the robustness in the variation of the mechanical parameters, the application of the steady and transient state, the ease of implementation, and less computation time. The MATLAB simulation and experimental results are shown in order to verify the validity of the proposed current compensating algorithm.

Modified Current Differential Relay for $Y-{\Delta}$ Transformer Protection ($Y-{\Delta}$ 변압기 보호용 수정 전류차동 계전기)

  • Jin, En-Shu;Kang, Yong-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.3
    • /
    • pp.95-101
    • /
    • 2006
  • This paper proposes a modified current differential relay for $Y-{\Delta}$ transformer protection. The relay uses the same restraining current as a conventional relay, but the differential current is modified to compensate for the effects of the exciting current. A method to estimate the circulating component of the delta winding current is proposed. To cope with the remanent flux, before saturation, the core-loss current is calculated and used to modify the measured differential current. When the core then enters saturation, the initial value of the flux is obtained by inserting the modified differential current at the start of saturation into the magnetization cure. Thereafter, the core flux is then derived and used in conjunction with the magnetization curve to calculate the magnetizing current. A modified differential current is then derived that compensates for the core-loss and magnetizing currents. The performance of the proposed differential relay was compared against a conventional differential relay. Test results indicate that the modified relay remained stable during severe magnetic inrush and over-excitation, because the exciting current was successfully compensated. This paper concludes by implementing the relay on a hardware platform based on a digital signal processor. The relay does not require additional restraining signal and thus cause time delay of the relay.

Analysis of Voltage, Current and Temperature Signals for Poor Connections at Electrical Connector (커넥터에서 접촉불량 발생시의 전압, 전류 및 온도 신호 특성 분석)

  • Kim, Sang-Chul;Kim, Doo Hyun;Kang, Shin Uk
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.2
    • /
    • pp.12-17
    • /
    • 2014
  • This paper is aimed to analyze the characteristics of simultaneous voltage, current and temperature signals for poor connection on electrical connector. In order to attain this purpose, detected were the current and voltage signals on electric wire with series arc, named arc signals, and also monitored were the changes of RMS, instantaneous value of waveform in time domain and temperature value with video. Two states are made normal state over $5kgf{\cdot}cm$ and poor connections state below $0.5kgf{\cdot}cm$ by screw gage. In the voltage signal case, the voltage drop was increased with which the current was increased. In the current signal case, poor connections at the time interval 1~4A all showed "shoulder", as distinct difference from the normal state shown waveform pattern. In the temperature signal case, poor connections are twice at 1A and five times at 4A in the normal state. The temperature continues insulation of electrical wiring and connector can be carbonized. The results of this study will be effectively used in developing the preventive devices and system for electric fire by poor connections.

Current-induced Phase Demodulation Using a PWM Sampling for a Fiber-optic CT

  • Park, Hyoung-Jun;Lee, June-Ho;Kim, Hyun-Jin;Song, Min-Ho
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.240-244
    • /
    • 2010
  • In this work, we used PWM sampling for demodulation of a fiber-optic interferometric current transformer. The interference signal from a fiber-optic CT is sampled with PWM triggers that produce a 90-degree phase difference between two consecutively sampled signals. The current-induced phase is extracted by applying an arctangent demodulation and a phase unwrapping algorithm to the sampled signals. From experiments using the proposed demodulation, we obtained phase measurement accuracy and a linearity error, in AC current measurements, of ~2.35 mrad and 0.18%, respectively. The accuracy of the proposed method was compared with that of a lock-in amplifier demodulation, which showed only 0.36% difference. To compare the birefringence effects of different fiber-optic sensor coils, a flint glass fiber and a standard single-mode fiber were used under the same conditions. The flint glass fiber coil with a Faraday rotator mirror showed the best performance. Because of the simple hardware structure and signal processing, the proposed demodulation would be suitable for low-cost over-current monitoring in high voltage power systems.

Design of Digital Current Mode Control for Power Converters (전력변환회로의 디지털 전류모드제어기 설계)

  • Jung Young-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.162-168
    • /
    • 2005
  • In this paper, a digital current mode control is designed for the power converter applications. The designed digital current mode controller is derived analytically from the continuous time small signal model of the power converters. Due to the small signal model based derivations of the control law, the designed control method can be applicable to boost, buck, and buck-boost converters. It is also proven that the controlled power converter employing the designed digital current mode controller is always stable regardless of an operating conditions. In order to show the usefulness of a designed controller, experiments are carried out using a 16bit DSP micro-processor, TMS320LF2406A.

Modeling and Design of Average Current Mode Control (평균전류모드제어를 이용하는 컨버터의 모델링 및 설계)

  • Jung Young-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.347-355
    • /
    • 2005
  • In this paper, a new continuous~time small signal model of an average current mode control is proposed. Sampling effect Is considered to obtain the proposed small signal model. By the proposed model, the high frequency response characteristics of current loop gain might be predicted accurately compared to previous models. And this leads the prediction of inductor current response of the proposed model to be accurate compared to others. In order to show the usefulness of the proposed model, prediction results of the proposed model are compared to those of the circuit level simulator, PSIM and experiment.

Analysis of signal cable noise currents in nuclear reactors under high neutron flux irradiation

  • Xiong Wu;Li Cai;Xiangju Zhang;Tingyu Wu;Jieqiong Jiang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4628-4636
    • /
    • 2023
  • Cables are indispensable in nuclear power plants for transmitting data measured by various types of detectors, such as self-powered neutron detectors (SPNDs). These cables will generate disturbing signals that must be accurately distinguished and eliminated. Given that the cable current is not very significant, previous research has focused on SPND, with little attention paid to cable evaluation and validation. This paper specifically focuses on the quantitative analysis of cables and proposes a theoretical model to predict cable noise. In this model, the reaction characteristics between irradiated neutrons and cables were discussed thoroughly. Based on the Monte Carlo method, a comprehensive simulation approach of neutron sensitivity was introduced and long-term irradiation experiments in a heavy water reactor (HWR) were designed to verify this model. The theoretical results of this method agree quite well with the experimental measurements, proving that the model is reliable and exhibits excellent accuracy. The experimental data also show that the cable current accounts for approximately 0.2% of the total current at the initial moment, but as the detector gradually depletes, it will contribute more than 2%, making it a non-negligible proportion of the total signal current.

Short-circuit Protection for the Series-Connected Switches in High Voltage Applications

  • Tu Vo, Nguyen Qui;Choi, Hyun-Chul;Lee, Chang-Hee
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1298-1305
    • /
    • 2016
  • This paper presents the development of a short-circuit protection mechanism on a high voltage switch (HVS) board which is built by a series connection of semiconductor switches. The HVS board is able to quickly detect and limit the peak fault current before the signal board triggers off a gate signal. Voltage clamping techniques are used to safely turn off the short-circuit current and to prevent overvoltage of the series-connected switches. The selection method of the main devices and the development of the HVS board are described in detail. Experimental results have demonstrated that the HVS board is capable of withstanding a short-circuit current at a rated voltage of 10kV without a di/dt slowing down inductor. The corresponding short-circuit current is restricted to 125 A within 100 ns and can safely turn off within 120 ns.

CT compensating algorithm Based on a Digital Signal Processor (DSP를 이용한 변류기 보상 알고리즘)

  • Kang, Yong-Cheol;Lee, Byung-Eun;So, Soon-Hong;Hwang, Tae-Keun;Lee, Ji-Hoon;Cha, Sun-Hee;Kim, Yeon-Hee;Jang, Sung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.255-257
    • /
    • 2005
  • This paper proposes a compensating algorithm of a measurement torrent transformer (CT) using DSP. The core flux is calculated and then magnetizing current is estimated in accordance with the flux-magnetizing current curve. The core loss current is obtained with the core loss resistance and the secondary voltage. The correct secondary current is estimated by adding the exciting current to the measured secondary current. The performance of the proposed algorithm was tested using EMTP generated data. The experiment on the real CT was conducted using the prototype compensated system based on a digital signal processor. The results indicate that the algorithm can increase the accuracy of the measurement CT significantly.

  • PDF