• 제목/요약/키워드: current shaping

검색결과 138건 처리시간 0.03초

Antagonists of Both D1 and D2 Mammalian Dopamine Receptors Block the Effects of Dopamine on Helix aspersa Neurons

  • Kim, Young-Kee;Woodruff, Michael L.
    • BMB Reports
    • /
    • 제28권3호
    • /
    • pp.221-226
    • /
    • 1995
  • Dopamine mediates inhibitory responses in Helix aspersa neurons from the right parietal lobe ("F-lobe") of the circumoesophageal ganglia. The effects appeared as a dose-dependent hyperpolarization of the plasma membrane and a decrease in the occurrence of spontaneous action potentials. The average hyperpolarization with 5 ${\mu}m$ dopamine was -12 mV (${\pm}1.5$mV, S.D., n=12). Dopamine also modulated the currents 'responsible for shaping the action potentials in these neurons. When dopamine was added and action potentials were triggered by an injection of current, the initial depolarization was slowed, the amplitude and the duration of action potentials were decreased, and the after-hyperpolarization was more pronounced. The amplitude and the duration of action potential were reduced about 15 mV and about 13% by 5 ${\mu}m$ dopamine, respectively. The effects of dopamine on the resting membrane potentials and the action potentials of Helix neurons were dose-dependent in the concentration range 0.1 ${\mu}m$ to 50 ${\mu}m$. In order to show 1) that the effects of dopamine were mediated by dopamine receptors rather than by direct action on ionic channels and 2) which type of dopamine receptor might be responsible for the various effects, we assayed the ability of mammalian dopamine receptor antagonists, SCH-23390 (antagonist of D1 receptor) and spiperone (antagonist of D2 receptor), to block the dopamine-dependent changes. The D1 and D2 antagonists partially inhibited the dopamine-dependent hyperpolarization and the decrease in action potential amplitude. They both completely blocked the decrease in action potential duration and the increase in action potential after-hyperpolarization. The dopamine-induced slowdown of the depolarization in the initial phase of the action potentials was less effected by SCH-23390 and spiperone. From the results we suggest 1) that Helix F-lobe neurons may have a single type of dopamine receptor that binds both SCH-23390 and spiperone and 2) that the dopamine receptor of Helix F-lobe neurons may be homologous with and primitive to the family of mammalian dopamine receptors.

  • PDF

까를로 스까르파 미술관 건축에 있어서의 컨버전디자인 수법과 특성에 관한 연구 (A Study on the Characteristic of Conversion Design Methods by Carlo Scarpa's Museum Architecture)

  • 김소진;박찬일
    • 한국실내디자인학회논문집
    • /
    • 제17권1호
    • /
    • pp.39-49
    • /
    • 2008
  • Museum Architecture, passing through modem times, have been requested to make changes in order to respond to the necessities of current times as well, so that they come to develop various kinds of programs other than a mere exhibition. That is, museum began recognizing the diversity of activities available in the spaces and the openness to the public. And tried to keep up with the changes by linking the museum buildings with local community in urban architecture as a result. Conversion design is methodology aims at reforming old buildings into a museum or revitalizing buildings of historical significance into exhibition center, so that it made possible to utilize the texts of historical, cultural cities, which in turn contribute to the diversity of urban architecture and protection of buildings in environmental crisis. In the sense, the paper analyzes the life-long contribution and dedication of Carlo Scarpa, an Italian architect, in the conversion of museum architecture, and studies the style, techniques, and features witnessed from his architectural works, and finally offers an insight and a directing post to take advantage of diverse ways likely applicable in our urban architectures. Scarpa's features in his museum architecture are classified as follows: First, contrasting expression of reiteration and side by side to express the continuity of time Second, he conveyed implicated meanings through inserting contracted factors of the locality and traditionality. Third, his interest in formative works and handicraft had an influence on shaping conversion space Finally, expression of accidentally to change of a point of view.

펄스 복사 능력 개선을 위한 리플형 광대역특성을 갖는 비선형 와이어안테나 설계에 관한 연구 (A Study on the Design of Nonlinear Wire Antennas with Ripple-Type Wide Band Characteristics for Improvement of Pulse Radiation Ability)

  • 김연선;박의준
    • 대한전자공학회논문지TC
    • /
    • 제39권3호
    • /
    • pp.150-157
    • /
    • 2002
  • 펄스 안테나로 많이 사용되는 종래의 직선형 혹은 V-형 안테나의 원거리전장은 null점들을 갖는 주파수 특성을 가지므로 제한된 펄스 복사 능력을 가진다. 이를 개선시키기 위해 비선형적 형상을 갖는 와이어안테나의 합성법을 제안하였다 즉, 복사 전장의 주파수 의존성을 최소화시키는 형상방정식을 유도하고 그 해를 산출하므로서 리플형의 광대역 특성을 갖는 형상을 합성하였다. 그 결과 매우 넓은 주요 스펙트럼을 갖는 짧은 펄스의 복사에 유리함을 보였다. 따라서, 펄스폭이 좁을수록 합성된 다이폴 안테나 특성이 종래의 선형 다이폴 보다 우수한 피크치를 갖는 펄스 복사가 이루어짐을 보였다. 전류 분포 및 원거리 전장의 과도해석을 위해 모멘트법에 기반한 역 이산 푸리에 변환을 사용하였다.

Phylogenetics and Gene Structure Dynamics of Polygalacturonase Genes in Aspergillus and Neurospora crassa

  • Hong, Jin-Sung;Ryu, Ki-Hyun;Kwon, Soon-Jae;Kim, Jin-Won;Kim, Kwang-Soo;Park, Kyong-Cheul
    • The Plant Pathology Journal
    • /
    • 제29권3호
    • /
    • pp.234-241
    • /
    • 2013
  • Polygalacturonase (PG) gene is a typical gene family present in eukaryotes. Forty-nine PGs were mined from the genomes of Neurospora crassa and five Aspergillus species. The PGs were classified into 3 clades such as clade 1 for rhamno-PGs, clade 2 for exo-PGs and clade 3 for exo- and endo-PGs, which were further grouped into 13 sub-clades based on the polypeptide sequence similarity. In gene structure analysis, a total of 124 introns were present in 44 genes and five genes lacked introns to give an average of 2.5 introns per gene. Intron phase distribution was 64.5% for phase 0, 21.8% for phase 1, and 13.7% for phase 2, respectively. The introns varied in their sequences and their lengths ranged from 20 bp to 424 bp with an average of 65.9 bp, which is approximately half the size of introns in other fungal genes. There were 29 homologous intron blocks and 26 of those were sub-clade specific. Intron losses were counted in 18 introns in which no obvious phase preference for intron loss was observed. Eighteen introns were placed at novel positions, which is considerably higher than those of plant PGs. In an evolutionary sense both intron loss and gain must have taken place for shaping the current PGs in these fungi. Together with the small intron size, low conservation of homologous intron blocks and higher number of novel introns, PGs of fungal species seem to have recently undergone highly dynamic evolution.

파형정형된 IFDMA 신호에서 클리핑이 스펙트럼과 BER에 미치는 영향 (The Effect of Clipping on the Spectrum and BER of IFDMA Signal with Pulse Shaping)

  • 박승용;김정구
    • 한국통신학회논문지
    • /
    • 제34권11C호
    • /
    • pp.1106-1112
    • /
    • 2009
  • SC-FDMA(single carrier-frequency division multiple access)는 낮은 첨두전력을 가져 최근 3GPP LTE(3rd Generation Partnership Project Long Term Evolution)의 상향 다중 접속방식으로 채택되었다. 파형정형 여파기인 제곱근 상승여현 여파기의 롤오프 계수가 1에서 0으로 감소함에 따라 SC-FDMA의 부반송파 매핑방식 중 하나인 IFDMA(interleaved FDMA) 방식의 대역폭은 좁아지지만, 오히려 그 첨두전력은 심각하게 증가할 수 있다. 실제 시스템에서는 증폭기의 전력효율을 높이기 위하여 높은 첨두전력을 특정 값 이하로 절사하는 클리핑 과정을 수행하게 된다. 신호의 클리핑은 고주파 성분의 재생성 및 신호의 왜곡을 야기할 수 있다. 본 논문에서는 파형정형된 IFDMA 신호에서 클리핑이 스펙트럼과 오율에 미치는 영향을 분석한다.

USB 카메라를 이용한 실시간 구면진자 운동추적 감지시스템 (Real-Time Motion Tracking Detection System for a Spherical Pendulum Using a USB Camera)

  • 문병윤;홍성락;하만돈;강철구
    • 대한기계학회논문집A
    • /
    • 제40권9호
    • /
    • pp.807-813
    • /
    • 2016
  • 최근 다차원 운동의 잔류진동억제 제어를 위한 테스트베드로서 로봇 머니퓰레이터의 말단장치에 부착된 구면진자를 자주 활용하고 있다. 하지만 봅의 운동을 온라인에서 실시간으로 추적할 수 있는 자동감지장치가 없어, 봅의 궤적을 디지털데이터로 저장하고 플로팅하는데 불편함이 있었다. 본 논문에서는 디지털 USB 카메라를 이용하여 봅의 운동을 이차원 평면상에서 실시간으로 감지할 수 있는 시스템을 개발하였다. 본 시스템의 개발 목표를 빠른 이미지프로세싱 및 인터페이싱을 위한 하드웨어 구성과 효과적인 C 프로그래밍에 두었다. 개발된 시스템을, 2 자유도 스카라로봇의 말단장치에, 구면진자를 설치한 이차원 구면진자의 잔류진동억제 제어에 적용하여, 그 효용성을 입증하였다.

New trends of root canal disinfection and treatment strategies for infected root canal based upon evidence-based dentistry

  • Cho, Yong-Bum
    • 대한치과보존학회:학술대회논문집
    • /
    • 대한치과보존학회 2003년도 제120회 추계학술대회 제 5차 한ㆍ일 치과보존학회 공동학술대회
    • /
    • pp.608-608
    • /
    • 2003
  • The main objectives of root canal therapy are cleaning and shaping and then obturating the root canal system in 3 dimensions to prevent reinfection. Many instrumentation techniques and devices, supported by an irrigation system capable of removing pulp tissue remnants and dentin debris, have been proposed to shape root canals. But current regimens in chemomechanical debridement using instrumentation and irrigation with NaOCl are not predictably effective in root canal disinfection. These findings are not surprising because the root canal system is complex and contains numerous ramifications and anatomical irregularities. The microorganisms in root canals not only invade the anatomic irregularities of the root canal system but also are present in the dentinal tubules. Therefore further disinfection with an effective antimicrobial agent may be necessary and it well1mown that use of intracanal medication will lower bacterial count in infected root canals. Calcium hydroxide has a long history of use in endodontics, and more attention has been given to the use of calcium hydroxide as intracanal dressing for the treatment of infected pulp. However, when treatment is completed in one visit, no intracanal medications other than intracanal irrigants are used. Recently, a mixture of a tetracycline isomer, an acid, and a detergent(MTAD), has been introduced as a final rinse for disinfuction of the root canal system. It has been shown that MTAD is able to remove the smear layer with minimal erosive changes on the surface of dentin, and is effective against Enterococcus faecalis, a microorganism resistant to the action of other antimicrobial medications. In another study, the ability of MTAD was investigated to disinfect contaminated root canals with whole saliva and compared its efficacy to that of NaOCl Based on the results, it seems that MTAD is significantly more effective than 5.25% NaOCl in eradicating bacteria from infected root canals. In the cytotoxicity evaluation, MTAD is less cytotoxic than engenol, 3% $H20_2,\;Ca(OH)_2$ paste, 5.25% NaGCl, Peridex, and EDTA and more cytotoxic than 2.63%,1.31% and 0.66% NaOCl. Is it promising or transient?

  • PDF

광계수방식 물리입자 검출용 ASIC 설계 (An ASIC Design for Photon Pulse Counting Particle Detection)

  • 정준모;소명진;김효숙;한아름;소슬이
    • 전기전자학회논문지
    • /
    • 제23권3호
    • /
    • pp.947-953
    • /
    • 2019
  • 본 연구는 가시광선, 적외선, 자외선 등이 대기 중의 물리입자에 의해 산란되는 빛(광자)을 받아서 발생하는 전하(전자 전공 쌍)를 집적하여 전압신호로 변환 및 증폭하는 전치증폭단과, 증폭된 신호의 파형을 semi-gaussian으로 보정하는 파형보정기 및 신호의 크기를 임의의 기준전압과 비교하여 신호 크기에 따른 펄스를 2진수 디지털 신호로 출력시키는 비교기와 계수기를 포함하는 물리입자 검출용 ASIC 칩 설계에 관한 것이다. 본 연구에서 제안한 구조 및 기능 블록을 갖는 ASIC은 Global Foundries의 0.18um standard CMOS 공정 변수를 사용하여 설계하였으며, 동 공정을 이용하여 칩을 제작하여 동작 및 성능을 검증 확인하였다.

Super-resolution Microscopy with Adaptive Optics for Volumetric Imaging

  • Park, Sangjun;Min, Cheol Hong;Han, Seokyoung;Choi, Eunjin;Cho, Kyung-Ok;Jang, Hyun-Jong;Kim, Moonseok
    • Current Optics and Photonics
    • /
    • 제6권6호
    • /
    • pp.550-564
    • /
    • 2022
  • Optical microscopy is a useful tool for study in the biological sciences. With an optical microscope, we can observe the micro world of life such as tissues, cells, and proteins. A fluorescent dye or a fluorescent protein provides an opportunity to mark a specific target in the crowd of biological samples, so that an image of a specific target can be observed by an optical microscope. The optical microscope, however, is constrained in resolution due to diffraction limit. Super-resolution microscopy made a breakthrough with this diffraction limit. Using a super-resolution microscope, many biomolecules are observed beyond the diffraction limit in cells. In the case of volumetric imaging, the super-resolution techniques are only applied to a limited area due to long imaging time, multiple scattering of photons, and sample-induced aberration in deep tissue. In this article, we review recent advances in super-resolution microscopy for volumetric imaging. The super-resolution techniques have been integrated with various modalities, such as a line-scan confocal microscope, a spinning disk confocal microscope, a light sheet microscope, and point spread function engineering. Super-resolution microscopy combined with adaptive optics by compensating for wave distortions is a promising method for deep tissue imaging and biomedical applications.

Colloidal Optics and Photonics: Photonic Crystals, Plasmonics, and Metamaterials

  • Jaewon Lee;Seungwoo Lee
    • Current Optics and Photonics
    • /
    • 제7권6호
    • /
    • pp.608-637
    • /
    • 2023
  • The initial motivation in colloid science and engineering was driven by the fact that colloids can serve as excellent models to study atomic and molecular behavior at the mesoscale or microscale. The thermal behaviors of actual atoms and molecules are similar to those of colloids at the mesoscale or microscale, with the primary distinction being the slower dynamics of the latter. While atoms and molecules are challenging to observe directly in situ, colloidal motions can be easily monitored in situ using simple and versatile optical microscopic imaging. This foundational approach in colloid research persisted until the 1980s, and began to be extensively implemented in optics and photonics research in the 1990s. This shift in research direction was brought by an interplay of several factors. In 1987, Yablonovitch and John modernized the concept of photonic crystals (initially conceptualized by Lord Rayleigh in 1887). Around this time, mesoscale dielectric colloids, which were predominantly in a suspended state, began to be self-assembled into three-dimensional (3D) crystals. For photonic crystals operating at optical frequencies (visible to near-infrared), mesoscale crystal units are needed. At that time, no manufacturing process could achieve this, except through colloidal self-assembly. This convergence of the thirst for advances in optics and photonics and the interest in the expanding field of colloids led to a significant shift in the research paradigm of colloids. Initially limited to polymers and ceramics, colloidal elements subsequently expanded to include semiconductors, metals, and DNA after the year 2000. As a result, the application of colloids extended beyond dielectric-based photonic crystals to encompass plasmonics, metamaterials, and metasurfaces, shaping the present field of colloidal optics and photonics. In this review we aim to introduce the research trajectory of colloidal optics and photonics over the past three decades; To elucidate the utility of colloids in photonic crystals, plasmonics, and metamaterials; And to present the challenges that must be overcome and potential research prospects for the future.