• Title/Summary/Keyword: current sensorless

Search Result 384, Processing Time 0.021 seconds

A Speed Estimation based on the Very Quick Torque Control method of Induction Motors (유도전동기의 토크 속응제어방식에 근거한 속도 추정법의 제안)

  • Jeong, Seok-Kwon;Jeon, Bong-Hwan;Kim, Sang-Bong
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.255-257
    • /
    • 1995
  • In this paper, a new speed estimation method of induction motors based on the very quick torque control is proposed to realize speed sensorless control. The proposed method can be realized very simply by detecting primary motor current and voltage command at every sampling time. As the method need not the differential value of primary current in a arithmetic of voltage command, it can be expected to promote the precision of speed estimation in low speed area, especially. Through the numerical simulation, the validity of the proposed method was successfully confirmed.

  • PDF

Three Phase Voltage Source Soft Switching Inverter with High Frequency Pulse Current Transformers

  • Inaba, Claudio Y.;Hiraki, Eiji;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.2 no.4
    • /
    • pp.288-296
    • /
    • 2002
  • In this paper, a high frequency transformer - assisted auxiliary active resonant commutated snubber (HFTA-ARCS) for voltage source soft switching pulse width modulated power conversion circuits is presented. A three phase voltage source type soft switching inverter incorporating HFTA-ARCS circuits in its three bridge legs can reduce current rating of auxiliary active power switches and has sensorless simplified control scheme which any specified boost current management is not required for soft switching. Its operation principle and digital control scheme are described and a practical design method of circuit parameters on this HFTA-ARCS circuit is also introduced on the basis of computer simulation. Moreover, this space voltage vector modulated soft switching inverter system with DSP-based digital control scheme Is discussed and its effectiveness is proved on the basis of performance evaluations. The operating performances of this inverter system are also compared with those of conventional three-phase hard switching inverter under practical conditions of specified parameters.

Research of an On-Line Measurement Method for High-power IGBT Collector Current

  • Hu, Liangdeng;Sun, Chi;Zhao, Zhihua
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.362-373
    • /
    • 2016
  • The on-line measurement of high-power IGBT collector current is important for the hierarchical control and short-circuit and overcurrent protection of its driver and the sensorless control of the converter. The conventional on-line measurement methods for IGBT collector current are not suitable for engineering measurement due to their large-size, high-cost, low-efficiency sensors, current transformers or dividers, etc. Based on the gate driver, this paper has proposed a current measuring circuit for IGBT collector current. The circuit is used to conduct non-intervention on-line measurement of IGBT collector current by detecting the voltage drop of the IGBT power emitter and the auxiliary emitter terminals. A theoretical analysis verifies the feasibility of this circuit. The circuit adopts an operational amplifier for impedance isolation to prevent the measuring circuit from affecting the dynamic performance of the IGBT. Due to using the scheme for integration first and amplification afterwards, the difficult problem of achieving high accuracy in the transient-state and on-state measurement of the voltage between the terminals of IGBT power emitter and the auxiliary emitter (uEe) has been solved. This is impossible for a conventional detector. On this basis, the adoption of a two-stage operational amplifier can better meet the requirements of high bandwidth measurement under the conditions of a small signal with a large gain. Finally, various experiments have been carried out under the conditions of several typical loads (resistance-inductance load, resistance load and inductance load), different IGBT junction temperatures, soft short-circuits and hard short-circuits for the on-line measurement of IGBT collector current. This is aided by the capacitor voltage which is the integration result of the voltage uEe. The results show that the proposed method of measuring IGBT collector current is feasible and effective.

Rotor Position Sensorless Control of Optimal Lead Angle in Bifilar-Wound Hybrid Stepping Motor (복권형 하이브리드 스테핑 전동기의 회전차 위치 센서리스 최적 Lead Angle 제어)

  • Lee, Jong-Eon;Woo, Kwang-Joon
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.2
    • /
    • pp.120-130
    • /
    • 1999
  • In this paper, we show that the instantaneous phase current of the bifiler-wound hybrid stepping motor is dependent of lead angle and that the information of motor position is obtained from the instantaneous phase current at ${\pi}/2$ by the theoretical formular and its computer simulation results. From the facts, we design the microcontroller-based motor position sensorless controller of optimal lead angle, which generates the excitation pulses for the closed-loop drives. The controller is consist of microcontroller which has the function of A/D converter, programmable input/output timer, and the transfer table which has the values of optimal lead angle depending on motor velocity, and ROM which has the transfer table of the values of lead angle depending on velocity of motor and the values of instantaneous phase current at ${\pi}/2$. From the design of microcontroller-based controller, we minimize the external interface circuit and obtain flexibility by changing the contents of ROM transfer tables and the control software. We confirm that the designed controller drives the bifilar-wound hybrid stepping motor is the mode of optimal lead angle by comparing the instananeous phase current experimental results and computer simulation results.

  • PDF

A Novel Cell Balancing Circuit for Fast Charge Equalization (빠른 전하 균일화를 위한 새로운 구조의 셀 밸런싱 회로)

  • Park, Dong-Jin;Choi, See-Young;Kim, Yong-Wook;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.2
    • /
    • pp.160-166
    • /
    • 2015
  • This study proposes an improved cell balancing circuit for fast equalization among lithium-ion (Li-ion) batteries. A simple voltage sensorless charge balancing circuit has been proposed in the past. This cell balancing circuit automatically transfers energy from high-to low-voltage battery cells. However, the circuit requires a switch with low on-resistance because the balancing speed is limited by the on-resistance of the switch. Balancing speed decreases as the voltage difference among the battery cells decrease. In this study, the balancing speed of the cell balancing circuit is enhanced by using the auxiliary circuit, which boosts the balancing current. The charging current is determined by the nominal battery cell voltage and thus, the balancing speed is almost constant despite the very small voltage differences among the batteries. Simulation results are provided to verify the validity of the proposed cell balancing circuit.

Low-Cost Single-Phase to Three-Phase AC/DC/AC PWM Converters for Induction Motor Drives (유도전동기 구동을 위한 저가형 단상-3상 AC/DC/AC PWM 컨버터)

  • 김태윤;이지명;석줄기;이동춘
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.4
    • /
    • pp.322-331
    • /
    • 2002
  • In this paper, a single-phase to three-phase PWM converter topology using a single-phase half-bridge PWM rectifier and a 2-leg inverter for low cost three-phase induction motor drives is proposed. In addition, the source voltage sensor is eliminated with a state observer which controls the deviation between the model current and the system current to be zero. The converter topology is of lower cost than the conventional one, which gives sinusoidal input current, unity power factor, dc output voltage control, bidirectional power flow and VVVF output voltage. The experimental results for V/F control of 3Hp induction motor drives have been shown.

Harmonic Analysis of the Effects of Inverter Nonlinearity on the Offline Inductance Identification of PMSMs Using High Frequency Signal Injection

  • Wang, Gaolin;Wang, Ying;Ding, Li;Yang, Lei;Ni, Ronggang;Xu, Dianguo
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1567-1576
    • /
    • 2015
  • Offline inductance identification of a permanent magnet synchronous motor (PMSM) is essential for the design of the closed-loop controller and position observer in sensorless vector controlled drives. On the base of the offline inductance identification method combining direct current (DC) offset and high frequency (HF) voltage injection which is fulfilled at standstill, this paper investigates the inverter nonlinearity effects on the inductance identification while considering harmonics in the induced HF current. The negative effects on d-q axis inductance identifications using HF signal injection are analyzed after self-learning of the inverter nonlinearity characteristics. Then, both the voltage error and the harmonic current can be described. In addition, different cases of voltage error distribution with different injection conditions are classified. The effects of inverter nonlinearities on the offline inductance identification using HF injection are validated on a 2.2 kW interior PMSM drive.

A High-Performance Control System of Reluctance Synchronous Motor with Direct Torque Control (직접토크제어에 의한 리럭턴스 동기전동기의 고성능 제어시스템)

  • Kim, Min-Huei;Kim, Nam-Hun;Kim, Min-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2001.07e
    • /
    • pp.47-52
    • /
    • 2001
  • This paper presents a high-performance control system for Reluctance Synchronous Motor (RSM) drives with direct torque control (DTC). The system consist of stator flux observer, rotor position/speed estimator, torque estimator, two hysteresis band controllers, an optimal switching look-up table, IGBT voltage source inverter, and F240/C31DSP controller by using fully integrated control software. The stator flux observer is based on the combined voltage and current model with stator flux feedback adaptive control that inputs are current and voltage sensing of motor terminal with estimated rotor angle for wide speed range. The rotor position is estimated by the observed stator flux-linkage space vector. The estimated rotor speed can be determinated by differentiation of the rotor position used only in the current model part of the flux observer for a low speed operating area. To prove the suggested control algorithm, we have a simulation and testing at actual experimental system. The developed digitally high-performance position sensorless control system are shown a good motion control response characteristic results and high performance features using 1.0Kw RSM.

  • PDF

Speed-Sensorless Torque Monitoring on CNC Lathe using Internet (인터넷을 이용한 CNC 선반의 속도 센서리스 토크감시)

  • 홍익준;권원태
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.5
    • /
    • pp.99-105
    • /
    • 2004
  • Internet provides the useful method to monitor the current states of the machine tool no matter where a personnel monitors it. In this paper, a monitoring method of the torque of the machine tool's spindle induction motor using interne is suggested. To estimate the torque accurately, spindle driving system of an CNC lathe is divide into two parts, induction motor part and mechanical part attached to the induction motor spindle. Magnetizing current is calculated from the measured 3 phase currents without speed sensor used to estimate the torque generated by an induction motor. In mechanical part of the system, some of the torque is used to overcome friction and remaining torque is used to overcome cutting force. An equation to estimate friction torque is drawn as a function of cutting torque and rotation speed. Graphical programming is used to implement the suggested algorithm. to monitor the torque of an induction motor in real time and to make the estimated torque monitored on client computers. Torque of the spindle induction motor is well monitored on the client computers in about 3% error range under various cutting conditions.

Standstill Identification of Magnetic Flux Saturation Model Including Cross-Saturation for Synchronous Motors (상호 포화를 포함한 자기저항 동기 전동기의 자속 포화 모델에 대한 정지 상태 추정 기법)

  • Woo, Tae-gyeom;Park, Sang-woo;Choi, Seung-Cheol;Yoon, Young-Doo;Lee, Hak-Jun;Hong, Chanook;Lee, Jeongjoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.5
    • /
    • pp.364-371
    • /
    • 2021
  • A magnetic flux saturation model of Synchronous Reluctance Motors (SynRMs) and a parameter estimation method are proposed at standstill. The proposed magnetic flux model includes the nonlinear relationship between the current and the magnetic flux for self-saturation and cross-saturation. Voltage is injected at standstill to estimate the magnetic flux saturation model. Voltages are injected into the d-axis and q-axis to obtain data on self-saturation. Subsequently, voltages are simultaneously injected into the d-q axis to obtain data on cross-saturation. On the basis of the measured current and the calculated magnetic flux, the parameters of the proposed model are estimated using the least square method (LSM). Simulation and experiment were performed on a 1.5-kW SynRM to verify the proposed method. The proposed model can be used to create a high-efficiency operation table, a sensorless algorithm, and a current controller to improve the control performance of a motor.