• 제목/요약/키워드: current sensorless

검색결과 384건 처리시간 0.037초

인접한 스위치 온 타임 비교를 통한 SRM의 센서리스 제어 (Sensorless Control for Switched Reluctance Motor by Comparing Two Consecutive Switch-on times)

  • 양형열;김재혁
    • 조명전기설비학회논문지
    • /
    • 제24권4호
    • /
    • pp.185-191
    • /
    • 2010
  • 본 논문에서는 인덕턱스의 변화에 따른 전류 변화율을 모니터링 하여 회전자의 속도 및 위치를 추정하는 센서리스 구동방법을 제안한다. 전류의 변화율은 히스테리시스 전류제어 방법을 이용하여 인접한 두 스위치 온 타임을 비교함으로써 간단히 측정할 수 있다. 제안된 방법은 복잡한 계산이나 별도의 하드웨어를 필요치 않으므로 구현이 용이하다. 시뮬레이션과 실험 결과는 제안한 방법의 실효성을 보여준다.

Consideration of the Carrier Based Signal Injection Method in Three Shunt Sensing Inverters for Sensorless Motor Control

  • Jung, Sungho;Ha, Jung-Ik
    • Journal of Power Electronics
    • /
    • 제16권5호
    • /
    • pp.1791-1801
    • /
    • 2016
  • This paper considers a carrier based signal injection method for use in the three shunt sensing inverter (TSSI) for sensorless motor control. It also analyzes the loss according to the injection axis of the voltage signal. To remove both the phase current and rotor position sensors, a sensorless method and a phase current reconstruction method can be simultaneously considered. However, an interaction between the two methods can be incurred when both methods inject voltage signals simultaneously. In this paper, a signal injection based sensorless method with the 120° OFF Discontinuous PWM (DPWM) is implemented in a TSSI to avoid this interaction problem. Since one leg does not have a switching event for one sampling period in the 120° OFF DPWM, the switching loss is altered according to the injection axis. The switching loss in the d-axis injection case can be up to 32% larger than that in the q-axis injection case. Other losses according to the injection axis are also analyzed.

여자상의 초기 전류증가율 측정에 의한 Switched Reluctance Motor의 Sensorless 알고리즘 (New Sensorless Algorithm for SRM Based on Initial di/dt Measurement of Excited Phase Current)

  • 임준영;;신두진;오재윤;김정철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 추계학술대회 논문집 학회본부
    • /
    • pp.302-304
    • /
    • 1996
  • In this paper, a new algorithm for sensorless speed control of switched reluctance motor (SRM) is proposed. It is based on the measurement of initial rate of change of phase current. The initial rate of rise of phase current mainly depends up on the phase inductance at the time instant when the phase is excited. Therefore, the measurement of initial di/dt permits rotor position estimation, which is used to trigger the next phase. In the proposed technique, there is no need to generate additional current pulses when a phase is not excited. Therefore, this scheme does not introduce the unwanted braking torque. Also, only one current measurement is made every time a phase is excited. This reduces the computational load on the micro-controller and enhances the speed range of the sensorless drive. By using this scheme it is possible to implement the sensorless control of SRM using low cost micro-controller.

  • PDF

전기자동차 용 전동식 컴프레서를 위한 스위치드 릴럭턴스 모터의 센서리스 제어 (Sensorless control of Switched Reluctance Motor for Electric AC Compressors of Electrical Vehicles)

  • 전용희;김재혁
    • 조명전기설비학회논문지
    • /
    • 제28권10호
    • /
    • pp.37-42
    • /
    • 2014
  • This paper discusses study of sensorless control of a variable speed switched reluctance motor (SRM) for electric AC compressors on electrical vehicles. A typical SRM drive requires a position sensor such as an encoder or hall sensor to measure the angular rotor position. However, harsh environment in electrical AC compressors for electric vehicles makes it difficult to use the position sensor in their motor drive system. Therefore, a sensorless control scheme for electric compressor motors utilizing magnetic characteristics of SRM with respect to position angle and phase current is proposed. The overall variable speed SRM drive with position sensorless control scheme has been modeled using Matlab/Simulink software and closed loop current control simulation is presented to validate the proposed sensorless drive control.

고주파 주입 신호가 없는 IPMSM 센서리스 제어 안정성 향상을 위한 방안 (Method for Improving stability of IPMSM Sensorless Control in Relation No Signal about High Frequency voltage)

  • 조태호;주경진;박현종;김창현;이주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.850-851
    • /
    • 2015
  • In this paper, it employs IPMSM sensorless methods about current model and Extend-EMF methods. By using a MATLAB/Simulink program, it presents sensorless method in relation No high frequency voltage and replaces current based sensorless method. This IPMSM motor is drived by MTPA and Flux weakening controls for adjusting a actual motor application. In order to improving stability of IPMSM sensorless control, method about Sensorless estimation change is suggested by this paper.

  • PDF

파라미터 보상기를 가지는 비대칭 SRM의 센서리스 속도제어 (A Sensorless Speed Control of 2-Phase Asymmetric SRM with Parameter Compensator)

  • 임근민;안진우;이동희
    • 전력전자학회논문지
    • /
    • 제17권3호
    • /
    • pp.238-245
    • /
    • 2012
  • This paper presents a sensorless speed control of a 2-phase switch reluctance motor(SRM). The proposed sensorless control scheme is based on the slide mode observer with parameter compensator to improve the estimation performance. In the stand still position, the initial rotor position is determined by pulse current responses of each phase windings and the current difference. In order to determine an accurate initial rotor position, the two initial rotor positions are estimated by the difference of the pulse currents. From the stand still to the operating region, a simple open loop control which determines the commutation sequence by the pulse current of the unexcited phase winding is used. When the motor speed is reached to the sensorless control region, the estimated rotor position and speed by the slide mode observer are used to control the SRM. The flux calculator used in the slide mode observer is designed by phase voltage and the voltage drops in the phase resistance of the winding. The accuracy of the flux calculator is dependent on the phase resistance. For the continuous update of the phase resistance, current gradient at the inductance break point is used in this paper. The error of the estimated rotor position at the current gradient position is used to update the phase resistance to improve the sensorless scheme. The proposed sensorless speed control scheme is verified with a practical compressor used in home appliances. And the results show the effectiveness of the proposed control scheme.

Accuracy Enhancement of Parameter Estimation and Sensorless Algorithms Based on Current Shaping

  • Kim, Jin-Woong;Ha, Jung-Ik
    • Journal of Power Electronics
    • /
    • 제16권1호
    • /
    • pp.1-8
    • /
    • 2016
  • Dead time is typically incorporated in voltage source inverter systems to prevent short circuit cases. However, dead time causes an error between the output voltage and reference voltage. Hence, voltage equation-based algorithms, such as motor parameter estimation and back electromotive force (EMF)-based sensorless algorithms, are prone to estimation errors. Several dead-time compensation methods have been developed to reduce output voltage errors. However, voltage errors are still common in zero current crossing areas, and an effect of the error is much worse in a low speed region. Therefore, employing voltage equation-based algorithms in low speed regions is difficult. This study analyzes the conventional dead-time compensation method and output voltage errors in low speed operation areas. A current shaping method that can reduce output voltage errors is also proposed. Experimental results prove that the proposed method reduces voltage errors and improves the accuracy of the parameter estimation method and the performance of the back EMF-based sensorless algorithm.

Sliding Mode Observer Driver IC Integrated Gate Driver for Sensorless Speed Control of Wide Power Range of PMSMs

  • Oh, Jimin;Kim, Minki;Heo, Sewan;Suk, Jung-Hee;Yang, Yil Suk;Park, Ki-Tae;Kim, Jinsung
    • ETRI Journal
    • /
    • 제37권6호
    • /
    • pp.1176-1187
    • /
    • 2015
  • This work proposes a highly efficient sensorless motor driver chip for various permanent-magnet synchronous motors (PMSMs) in a wide power range. The motor driver chip is composed of two important parts. The digital part is a sensorless controller consisting mainly of an angle estimation block and a speed control block. The analog part consists of a gate driver, which is able to sense the phase current of a motor. The sensorless algorithms adapted in this paper include a sliding mode observer (SMO) method that has high robust characteristics regarding parameter variations of PMSMs. Fabricated SMO chips detect back electromotive force signals. Furthermore, motor current-sensing blocks are included with a 10-bit successive approximation analog-to-digital converter and various gain current amplifiers for proper sensorless operations. Through a fabricated SMO chip, we were able to demonstrate rated powers of 32 W, 200 W, and 1,500 W.

영구자석 표면부착형 동기전동기의 전류제어기를 이용한 센서리스 기동방법 및 속도제어 (Sensorless Speed Control and Starting Algorithm using Current Control of SPM Synchronous Motor)

  • 백인철;이주석;김학원
    • 전력전자학회논문지
    • /
    • 제18권6호
    • /
    • pp.523-529
    • /
    • 2013
  • A sensorless speed control of a permanent magnet synchronous motor(PMSM) which utilizes MRAS based scheme to estimate rotor speed and position is presented. Considering an error between real and estimated rotor position values, a state equation of PMSM in the synchronous d-q reference frame is represented. A state equation of model system which uses estimated speed and nominal parameter values is expressed. To minimize the errors between the derivatives of d-q axis currents of real and model system, MRAS based adaptation mechanisms for the estimation of rotor speed and position are derived. On the other hand, for the acceleration stage of motor just before the sensorless operation, an acceleration scheme using only d-axis current control is proposed. To show the validity of the proposed scheme, experimental works are carried out and evaluated. During acceleration stage, the acceleration scheme using only d-axis current command shows good acceleration performance and controlled current level. For the sensorless operation, at low speed (5% of rated speed), a good performance is observed.

차량용 보조발판의 센서리스 직류전동기 위치 제어 (Sensorless Position Control of DC Motor for the Auxiliary Scaffolding)

  • 이동희
    • 전력전자학회논문지
    • /
    • 제24권6호
    • /
    • pp.389-395
    • /
    • 2019
  • This paper presents the sensorless position control of an auxiliary scaffolding step system for vehicles using DC motors. The designed auxiliary scaffolding step has a mechanical protector at the stop position. At this position, the scaffolding is forcibly stopped by the mechanical protector, and the motor current is dramatically increased to the stall current of the DC motor, thereby increasing the electrical damage. In this study, the estimated back EMF- and current model-based observers are proposed to estimate the motor speed and stop position. A simple V/F acceleration voltage pattern is used to operate the auxiliary scaffolding system. The estimated moving position is adopted to determine the stop position of the DC motor with the load current state. The operating current of the DC motor can be reduced by the estimated moving position and V/F acceleration pattern. At the stop position, the proposed sensorless position controller can smoothly stop the DC motor with the estimated moving position and reduced load current without any mechanical and electrical stress from the stall current from the mechanical protector. The proposed control scheme is verified by the comparison of simulations and experiments.