• Title/Summary/Keyword: current leads

Search Result 877, Processing Time 0.027 seconds

Investigation of I-V characteristics and heat generation of multiply connected HTS conductors in parallel

  • Park, H.C.;Kim, S.;Cho, J.;Sohn, M.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.2
    • /
    • pp.20-23
    • /
    • 2012
  • With continuous development of the 2nd generation HTS conductor, the critical current of the conductor is also increasing. However, many applications require more than 2 conductors in parallel to transport large current. Applications such as HTS power cables and some HTS current leads usually need much larger transport current than that provided by a single conductor and they require more than several tens of HTS conductors. In the case of parallel connection of multiple HTS conductors, the current distribution depends on the contact resistance of each conductor at the terminals for DC operation. The non-uniform distribution of the terminal resistances results in a non-uniform distribution of the current. The resultant current non-uniformity affects on the measurement of the I-V curve and the thermal performance of the multiple conductors. This paper describes the I-V curves obtained from multiply connected HTS conductors with different terminal contact resistances to investigate the relationship between the distorted I-V curve and heat generation.

An Emitter Switched Thyristor with vertical series MOSFET structure (수직형 직렬 MOSFET 구조의 Emitter Switched Thyristor)

  • Kim, Dae-Won;Kim, Dae-Jong;Sung, Man-Young;Kang, Ey-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.392-395
    • /
    • 2003
  • For the first time, the new dual trench gate Emitter Switched Thyristor is proposed for eliminating snap-back effect which leads to a lot of serious problems of device applications. Also, the parasitic thyristor that is inherent in the conventional EST is completely eliminated in the proposed EST structure, allowing higher maximum controllable current densities for ESTs. Moreover, the new dual trench gate allows homogenous current distribution throughout device and preserves the unique feature of the gate controlled current saturation of the thyristor current. The conventional EST exhibits snap-back with the anode voltage and current density 2.73V and $354/{\S}^2$, respectively. But the proposed EST exhibits snap-back with the anode voltage and current density 0.93V and $58A/{\S}^2$, respectively. Saturation current density of the proposed EST at anode voltage 6.11V is $3797A/{\S}^2$. The characteristics of 700V forward blocking of the proposed EST obtained from two dimensional numerical simulations (MEDICI) is described and compared with that of the conventional EST.

  • PDF

The electrical effects of PV cell's short-circuit current difference for PV module application (태양전지의 단락전류 편차가 태양전지모듈에 미치는 전기적인 영향 분석)

  • Kim, Seung-Tae;Park, Chi-Hong;Kang, Gi-Hwan;Ahn, Hyung-Keun;Han, Deuk-Young;Yu, Gwon-Jong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.3-4
    • /
    • 2008
  • Photovoltaic module consists of serially connected solar cell which has low voltage characteristics. But, the other way, the whole current flow of PV module is restricted by lowest current of one solar cell. For the experiment, we make PV module composing the solar cells that have short circuit current difference of 0%, 1%, 3% and 5%. Using Light I-V and Dark I-V measurements, electrical characteristic parameters like Isc(short-circuit current), Voc(open-circuit voltage), Rs(series resistance), Rsh(shunt resistance) are analyzed. PV module of low current characteristics has electrical stress from other modules. And, such a module has a tendency of hot-spot suffering which leads degradation.

  • PDF

Implementing a Dielectric Recovery Strength Measuring System for Molded Case Circuit Breakers

  • Cho, Young-Maan;Rhee, Jae-ho;Baek, Ji-Eun;Ko, Kwang-Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1752-1758
    • /
    • 2018
  • In a low-voltage distribution system, the molded case circuit breaker (MCCB) is a widely used device to protect loads by interrupting over-current; however the hot gas generated from the arc discharge in the interrupting process depletes the dielectric recovery strength between electrodes and leads to re-ignition after current-zero. Even though the circuit breaker is ordinarily tripped and successfully interrupts the over-current, the re-ignition causes the over-current to flow to the load again, which carries over the failure interruption. Therefore, it is necessary to understand the dielectric recovery process and the dielectric recovery voltage of the MCCB. To determine these characteristics, a measuring system comprised of the experimental circuit and source is implemented to apply controllable recovery voltage and over-current. By changing the controllable recovery voltage, in this work, re-ignition is driven repeatedly to obtain the dielectric recovery voltage V-t curve, which is used to analyze the dielectric recovery strength of the MCCB. A measuring system and an evaluation technique for the dielectric recovery strength of the MCCB are described. By using this system and method, the measurement to find out the dielectric recovery characteristics after current-zero for ready-made products is done and it is confirmed that which internal structure of the MCCB affects the dielectric recovery characteristics.

IMPROVEMENT OF GAS TUNGSTEN ARC WELDABILITY FOR FERRlTIC STAINLESS STEELS

  • Cui Li;Jeong, Ho-shin;Park, Byung-Il;Kim, Sung-Kab
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.107-112
    • /
    • 2002
  • Ferritic stainless steels would be the most important alloys under the chloride environment. They are a cheaper alternative to austenitic stainless steels [1]. The present study is related to gas tungsten arc welding (GTAW) characteristics of Type 444 stainless steels. The heat of welding leads to grain coarsening in the HAZ and in the weld metal of ferritic stainless steels because they solidify directly from the liquid to the ferritc phase without any intermediate phase transformation. It is therefore recommended that these alloys be welded with a low heat input and at high welding speeds. Attempts to improve weldability were made by using of direct current straight polarity (DCSP) and pulsed current GTAW processes in this study. Measuring weld bead, grain size and Erichsen test were performed and the effects of heat input, pulse frequency on the weld metal and HAZ were studied. The main results were obtained as followings: decreasing heat input was effective to control the width of weld both in DCSP welding and in pulsed current welding; pulsed current welding was found to refine the grain size effectively and the finest grain size was found at the frequency of 150Hz in pulsed current welding; it was found that decreasing heat input also refine the HAZs effectively and the frequency had no different effect on HAZ at the same heat input; the ductility could be improved effectively in pulsed current welding.

  • PDF

An Experimental Analysis of the Ripple Current Applied Variable Frequency Characteristic in a Polymer Electrolyte Membrane Fuel Cell

  • Kim, Jong-Hoon;Jang, Min-Ho;Choe, Jun-Seok;Kim, Do-Young;Tak, Yong-Sug;Cho, Bo-Hyung
    • Journal of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.82-89
    • /
    • 2011
  • Differences in the frequency characteristic applied to a ripple current may shorten fuel cell life span and worsen the fuel efficiency. Therefore, this paper presents an experimental analysis of the ripple current applied variable frequency characteristic in a polymer electrolyte membrane fuel cell (PEMFC). This paper provides the first attempt to examine the impact of ripple current through immediate measurements on a single cell test. After cycling for hours at three frequencies, each polarization and impedance curve is obtained and compared with those of a fuel cell. Through experimental results, it can be absolutely concluded that low frequency ripple current leads to long-term degradation of a fuel cell. Three different PEMFC failures such as membrane dehydration, flooding and carbon monoxide (CO) poisoning that lead to an increase in the impedance magnitude at low frequencies are simply introduced.

Analysis of the Bearing Fault Effect on the Stator Current of an AC Induction Motor (유도전동기의 고정자 전류에 미치는 베어링 고장 영향 분석)

  • Kim, Jae-Hoon;Lee, Dong-Ik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.6
    • /
    • pp.635-640
    • /
    • 2014
  • Detection and diagnosis of incipient bearing fault in an induction motor is important for the prevention of serious motor failure. This paper presents an analysis of the effect of a faulty bearing on the stator current of an induction motor. A bearing fault leads to torque oscillations which result in phase modulation of the stator current. Since the torque oscillations cause specific frequency components at the stator current spectrum to rise sharply, the bearing fault can be detected by checking out the faultrelated frequency. In this paper, a mathematical model of the load torque oscillation caused by a bearing fault is presented. The proposed model can be used to analyze the physical phenomenon of a bearing fault in an induction motor. In order to represent the bearing fault effect, the proposed model is combined with an existing model of vector-controlled induction motors. A set of simulation results demonstrate the effectiveness of the proposed model and represent that bearing fault detection using a stator current is useful for vector-controlled induction motors.

A Development of the High Precise Measuring Device and Methods of Resistive Leakage Current for the Deterioration Diagnosis of ZnO Arrester (산화아연 피뢰기의 열화진단을 위한 저항성누설전류의 고정도 측정기법 및 장치의 개발)

  • Lee, B.H.;Kang, S.M.;Jeon, D.K.;Park, K.Y.;Choi, H.S.;Cho, S.C.;Baek, Y.H.;Lee, D.H.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1668-1670
    • /
    • 2003
  • This paper deals with a development of the high precise measuring device of resistive leakage current for the deterioration and diagnosis of ZnO arresters. The resistive leakage current increasing with time leads to a thermally unstable state that may even experience a disaster. So, the resistive leakage current can be used as an indicator to discriminate whether the ZnO arrester blocks is in good state or in bad. The resistive leakage current measuring system with an analysis program operated with micro-processor using the time delay addition method was designed and fabricated. The proposed measuring systems for the resistive leakage current can effectively be used to develop the techniques of forecasting the deterioration of ZnO arresters in electric power systems.⨀ᔌ?؀㔳㤮㈻Ԁ䭃䑎䷗ᜒं6〰Ԁ䭃䑎䴀

  • PDF

Design of an Integrated Current-Voltage Charging Compensator for the LLC Resonant Converter-Based Li-ion Battery Charger (LLC 공진형 컨버터 기반 리튬이온 배터리 충전기의 통합 전류-전압 보상기 설계방법 연구)

  • Choi, Yeong-Jun;Choi, See-Young;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.2
    • /
    • pp.126-133
    • /
    • 2017
  • The conventional battery charger requires two separate voltage and current compensators to achieve constant current and constant-current-charging profile. This compensator configuration leads to an inevitable transient response during the mode change between the constant current and the constant voltage operation. Futhermore, a tedious and complicated design process is required to consider a widely changing battery voltage and the nonlinear electrical properties of Li-ion battery. This study proposes a single integrated voltage-current compensator of the LLC resonant converter for Li-ion battery charger applications to overcome the aforementioned drawbacks. The proposed compensator is designed to provide a smooth and reliable performance during the entire charging process while providing the reduced design efforts and seamless mode transient response. Several experimental results based on a 300 W prototype converter and its theoretical analysis are provided to verify the effectiveness of the proposed compensator.

Experimental Investigation of Output Current Variation in Biased Silicon-based Quadrant Photodetector

  • Liu, Hongxu;Wang, Di;Li, Chenang;Jin, Guangyong
    • Current Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.273-276
    • /
    • 2020
  • We report on the relationship between output current for quadrant photodetector (QPD) and bias voltage in silicon-based p-i-n (positive-intrinsic-negative) QPD examined using millisecond pulse laser (ms pulse laser) irradiation. The mechanism governing the relationship was further studied experimentally. The output current curves were obtained by carrying out QPD under different bias voltages (0-40 V) irradiated by ms pulse laser. Compared to other photodetectors, the relaxation was created in the output current for QPD which is never present in other photodetectors, such as PIN and avalanche photodetector (APD), and the maximum value of relaxation was from 6.8 to 38.0 ㎂, the amplitude of relaxation increases with bias value. The mechanism behind this relaxation phenomenon can be ascribed to the bias voltage induced Joule heating effect. With bias voltage increasing, the temperature in a QPD device will increase accordingly, which makes carriers in a QPD move more dramatically, and thus leads to the formation of such relaxation.