• Title/Summary/Keyword: current control

Search Result 11,428, Processing Time 0.047 seconds

A Study on the Three-Phase Active Power Filter using Predictive Current Control Method (예측전류제어방식을 이용한 3상 능동전력필터에 관한 연구)

  • Kwon, Byung-Gi;Woo, Myung-Ho;Jeong, Seung-Gi
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.138-140
    • /
    • 1994
  • In this paper, a three-phase active power filter using voltage- source PWM converter is designed to eliminate the harmonics and compensate the reactive power in the ac side. The predictive current control method is adopted, which provides constant switching frequency and low current ripple but has inherently one sampling error between the command and the actual current. Here we propose the algorithm which corrects this delay time. The converter voltage obtained from this current control can be accomplished by the space vector modulation method at a voltage-type converter. All control sequences of active filter is executed by a DSP which is designed to calculate floating points at very hight speed. Finally, the validity of this filter using the predictive current control method is demonstrated through experimental results.

  • PDF

Compensation Method of Current Measurement Error for Vector-Controlled Inverter of 2-Phase Induction Motor (2상 유도전동기용 벡터제어 인버터를 위한 전류측정 오차 보상 방법)

  • Lee, Ho-Jun;Yoon, Duck-Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.7
    • /
    • pp.1204-1210
    • /
    • 2016
  • The phase currents must be accurately measured to achieve the instantaneous torque control of AC motors. In general, those are measured using the current sensors. However, the measured current signals can include the offset errors and scaling errors by several components such as current sensors, analog amplifiers, noise filter circuits, and analog-to-digital converters. Therefore, the torque-controlled performance can be deteriorated by the current measurement errors. In this paper we have analyzed the influence caused by vector control of 2-phase induction motor when two errors are included in measured phase currents. Based on analyzed results, the compensation method is proposed without additional hardware. The proposed compensation method was applied vector-controlled inverter for 2-phase induction motor of 360[W] class and verified through computer simulations and experiments.

High Speed Control of a Multi-pole Brake Motor Under a Long Current Control Period (다극 브레이크 모터의 긴 전류 제어주기 고속영역 제어)

  • Kim, Dokun;Park, Hongjoo;Park, Kyusung;Kim, Seonhyeong;Lee, Geunho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.2
    • /
    • pp.137-144
    • /
    • 2015
  • In hybrid or electric vehicles, the hydraulic brake system must be controlled cooperatively with the traction motor for regenerative braking. Recently, a motor driven brake system with a PMSM (Permanent Magnet Synchronous Motor) has replaced conventional vacuum boosters to increase regenerative power. Unlike industry motor controls, additional source codes such as functional safety are essential in automotive applications to meet ISO26262 standards. Therefore, the control logic execution time increases, which also causes an extension of the motor current control period. The increased current control period makes precise motor current control challenging inhigh speed ranges where the motor is driven by high frequency. In this paper, a PWM update strategy and a time delay compensation method are suggested to improve current control and system performance. The proposed methods are experimentally verified.

Efficiency Optimization Control of IPMSM Drive using multi HFC (다중 HFC를 이용한 IPMSM 드라이브의 효율 최적화 제어)

  • Choi, Jung-Sik;Ko, Jae-Sun;Kang, Sung-Jun;Baek, Jeong-Woo;Jang, Mi-Geum;Kim, Soon-Young;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.355-358
    • /
    • 2009
  • This paper proposes efficiency optimization control of IPMSM drive using multi hybrid fuzzy controller(HFC). The design of the speed controller based on fuzzy-neural network that is implemented using fuzzy control and neural network. The design of the current based on HFC using model reference and the estimation of the speed based on neural network using ANN controller. In order to maximize the efficiency in such applications, this paper proposes the optimal control method of the armature current. The controllable electrical loss which consists of the copper loss and the iron loss can be minimized by the optimal control of the armature current. The minimization of loss is possible to realize efficiency optimization control for the proposed IPMSM The optimal current can be decided according to the operating speed and the load conditions. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using multi HFC. Also, this paper proposes speed control of IPMSM using HFC1, current control of HFC2-HFC3 and estimation of speed using ANN controller. The proposed control algorithm is applied to IPMSM drive system controlled HFC, the operating characteristics controlled by efficiency optimization control are examined in detail.

  • PDF

Robust and Unity Input Power Factor Control Scheme for Electric Vehicle Battery Charger (전기차 배터리 충전기용 강인한 단위 입력 역률 제어장치)

  • Nguyen, Cong-Long;Lee, Hong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.2
    • /
    • pp.182-192
    • /
    • 2015
  • This study develops a digital control scheme with power factor correction for a front-end converter in an electric vehicle battery charger. The front-end converter acts as the boost-type switching-mode rectifier. The converter assumes the two roles of the battery charger, which include power factor control and robust charging performance. The proposed control scheme consists of a charging control algorithm and a grid current control algorithm. The scheme aims to obtain unity input power factor and robust performance. Based on the linear average model of the converter, a constant-current constant-voltage charging control algorithm that passes through only one proportional-integral controller and a current feed-forward path is proposed. In the current control algorithm, we utilized a second band pass filter, a single-phase phase-locked loop technique, and a duty-ratio feed-forward term to control the grid current to be in phase with the grid voltage and achieve pure sinusoidal waveform. Simulations and experiments were conducted to verify the effectiveness of the proposed control scheme, both simulations and experiments.

Design of Control a Algorithm for Arc Fault Current without Current Sensor (센서없는 아크고장전류 제어 알고리즘 설계)

  • Ban, Gi-Jong;Kim, Lark-Kyo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.6
    • /
    • pp.255-260
    • /
    • 2006
  • Arc Fault Current is an which occurrs in two opposite electrode. In this paper, arc current control algorithm is designed for the interruption of arc fault current which is occurred in the low voltage network. This arc is one of the main causes of electric fire. General arc current sensor has troubles for detecting arc currents, thus we would like to propose the arc current detection method without current sensor. In this parer, arc discharge currents within power lines are being detected through the arc current control algorithm.

Torque Control Scheme of Switched Reluctance Motor using Neural Network (신경회로망을 이용한 SRM의 토오크 제어)

  • 정연석;이장선;김윤호
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.171-174
    • /
    • 1999
  • The torque of SRM is developed by phase currents and inductance variation. Phase currents and inductance variation. Phase current is often the controlled variable in electrical motor drives, so it seems natural to use closed loop current controllers. However, the highly nonlinear nature of switched reluctance motors makes optimisation of closed loop current controlled difficult because of saturation effect in magnetic circuit. Therefore, torque generation region is nonlinearly varied according to phase current and rotor position. This paper describes the torque control scheme with neural network that can control varied with load torque. The torque control is simulated by PSIM.

  • PDF

Predictive Current Control of 12-Pulse Parallel Connected Dual Converter System (12펄스 병렬 연결 듀얼 컨버터 시스템의 예측전류제어)

  • 이창원;송인호;최창호
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.405-408
    • /
    • 1998
  • In this paper, a predictive current control of 12-pulse parallel connected dual converter system with interphase transfromer(IPT) is presented. Firstly, 12-pulse parallel connected dual converter system and the predictive current control of this system is discussed. And the validity of the presented system and the excellence of the predictive current control response is proved through the simyulation and experiment result.

  • PDF

Speed Control for Synchronous Motor Using the Current Control Algorithm (전류제어 알고리즘에 의한 동기모터의 속도제어)

  • Byun, J.H.;Jeong, S.K.
    • Journal of Power System Engineering
    • /
    • v.3 no.1
    • /
    • pp.67-73
    • /
    • 1999
  • It is not easy to control the speed of AC motors accurately without modeling with some parameters for the controlled system. However, there are some application parts which do not require high speed responses strictly and the motor parameters can not to be identified simply. In this paper, a speed control method for a synchronous motor(S.M) with unknown parameters of the motor is investigated. The method is based on the current control algorithm. Speed controller and current controller are designed using PI control law. Some experiments are performed using DSP and power expert system to prove the validity of the proposed method. Throughout experimental results, the method is confirmed successfully. This method is expected to control the system with unknown parameters of the S.M efficiently.

  • PDF

Input and Output Control of PWM Rectifiers using a Nonlinear Control Technique (비선형 제어기법을 이용한 PWM 정류기의 입출력 제어)

  • Lee, Dong-Chun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.12
    • /
    • pp.701-708
    • /
    • 1999
  • The PWM rectifiers are capable of supplying sinusoidal current control and unity power factor control on the input side and dc output voltage control on the output side. By applying nonlinear control to the PWM rectifiers, the responses of input current and output voltage can be improved and due to fast voltage control the output electrolytic capacitor can be reduced remarkably. In addition, it is checked whether or not the current capacity of the reduced-size capacitor allows the ripple current of the rectifier. The nonlinear control technique gives a good performance for supply voltage disturbances. The validity of the proposed scheme has been verified by the experiment using DSP.

  • PDF