• Title/Summary/Keyword: current compensation

Search Result 1,232, Processing Time 0.041 seconds

An Analysis on the Damage Compensation of Hanwoo Farmers as a Result of the Korea-U. S. Free Trade Agreement (한.미 FTA 체결에 따른 한우농가 피해보전효과 분석)

  • Choi, Se-Hyun;Cho, Jae-Hwan;Gim, Uhn-Soon
    • Korean Journal of Organic Agriculture
    • /
    • v.21 no.4
    • /
    • pp.523-538
    • /
    • 2013
  • To help improve the current government practice of direct damage-compensation policies, resulting from the loss of profit, sustained by Hanwoo farmers, as a result of the recent Korea-U. S. Free Trade Agreement (FTA), this research aims to examine any problems or issues caused by said policies. To accomplish this task, we have established Hanwoo-SIMO model and estimated the damage of Hanwoo farmers, one without the implementation of the FTA and another with the FTA, to compare and contrast the two. We then analyzed the efficacy of the current government policies. According to our analysis, the current direct compensation policies for the loss of profit on the part of Hanwoo farmers are insufficient. To address this problem, we recommend the government enact a new direct damagecompensation law to address the following issues. First, as the base formula of damage-compensation, the government should use current price of the beef rather than the annually changing flexible price. Second, the flexible control index should remain fixed at 1.0 rate while the government prepares the adequate amount of the damage compensating direct payment resulting from the FTA. Third, the direct government compensation policy should extend beyond the current 15 years (2013-2026) as the profit loss is expected to increase after the midpoint of the FTA.

Coordinated Control Strategies with and without Circulating Current in Unified Power Quality

  • Feng, Xing-tian;Zhang, Zhi-hua
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1348-1357
    • /
    • 2015
  • Under traditional unified power quality conditioner (UPQC) control, a UPQC series converter (SC) is mainly used to handle grid-side power quality problems while its parallel converter (PC) is mainly used to handle load-side power quality problems. The SC and PC are relatively independent. The SC is usually in standby mode and it only runs when the grid voltage abruptly changes. In this paper, novel UPQC coordinated control strategies are proposed which use the SC to share the reactive power compensation function of the PC especially without grid-side power quality problems. However, in some cases, there will be a circulating current between the SC and the PC, which will probably influence the compensation fashion, the compensation capacity, or the normal work of the UPQC. Through an active power circulation analysis, strategies with and without a circulating current are presented which fuses the reactive power allocation strategy of the SC and the PC, the composite control strategy of the SC and the compensation strategy of the DC storage unit. Both of the strategies effectively solve the SC long term idle problem, limit the influence of the circulating current, optimize all of the UPQC units and reduce the production cost. An analysis, along with simulation andexperimental results, is presented to verify the feasibility and effectiveness of the proposed control strategies.

An ANN Controlled Three-Phase Auto-Tuned Passive Filter for Harmonic and Reactive Power Compensation

  • Sindhu, M.R.;Nair, Manjula;Nambiar, T.N.P.
    • Journal of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.403-409
    • /
    • 2009
  • Automatically tuned passive filters can improve power quality to a great extent in power systems. A novel three-phase shunt auto-tuned filter is designed to effectively compensate source current harmonics and to provide reactive power required by the non-linear load, which draws a highly reactive, harmonic-rich current from the supply. An artificial neural network (ANN) based controller selects filter component values in accordance with reactive power requirement and harmonic compensation. Traditional passive filters are permanently connected to the system and draw large amounts of source current even under light load conditions. By using auto-tuned filters, the passive filter components can be controlled according to load variations and, hence, draw only required source currents. The selection is done by the ANN with the help of a properly tuned knowledge base to provide instantaneous compensation using a digital controller.

Instantaneously Active/Reactive Power Compensation of Distribution Static Compensator using Phase Shift (배전용 정지형 보상기의 위상변이를 이용한 순시 유효/무효전력 보상)

  • Hong, Sung-Min;Choi, Jong-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.468-469
    • /
    • 2010
  • DSTATCOM(Distribution STATic COMpensator) is one of the custom power devices, and protects a distribution line from unbalanced and harmonic current caused by non-linear and unbalanced loads. Conventional researches use a LPF(Low Pass Filter) to eliminate ripple component at the calculation of compensation current. This paper proposes a calculation of compensation current using phase shift that can be a counterproposal of conventional methods using LPF.

  • PDF

Design of a Surface-Mounted PMSM Current Controller Using Uncertainty Estimation with a PI Observer (PI 관측기의 불확실성 추정을 이용한 표면부착형 영구자석 동기기의 전류 제어기 설계)

  • Kim, In-Hyuk;Choi, Dae-Sik;Son, Young-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.1011-1016
    • /
    • 2011
  • This paper presents a robust current controller for a surface-mounted permanent magnet synchronous motor(SPMSM) by using a PI observer. The decoupling PI(proportional-integral) controller combined with an additional feed-forward compensation has been used for the current controller. The classical feed-forward compensation using velocity information and system parameters is not expected to achieve a robust performance against parameter uncertainties. This paper has adopted a PI observer for the feed-forward compensation to cope with parameter uncertainties without using velocity information. A simple PI observer has been designed to compensate the disturbances that represent velocity coupled terms and parameter uncertainties. Experimental results as well as computer simulations with 630W SPMSM confirm that the proposed approach can deal with the effects of the disturbance and improve the control performance.

Compensation of Current Offset Error in Half-Bridge PWM Inverter for Linear Compressor

  • Kim, Dong-Youn;Im, Won-Sang;Hwang, Seon-Hwan;Kim, Jang-Mok
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1593-1600
    • /
    • 2015
  • This paper proposes a novel compensation algorithm of current offset error for single-phase linear compressor in home appliances. In a half-bridge inverter, current offset error may cause unbalanced DC-link voltage when the DC-link is comprised of two serially connected capacitors. To compensate the current measurement error, the synchronous reference frame transformation is used for detecting the measurement error. When an offset error occurs in the output current of the half-bridge inverter, the d-axis current has a ripple with frequency equal to the fundamental frequency. With the use of a proportional-resonant controller, the ripple component can be removed, and offset error can be compensated. The proposed compensation method can easily be implemented without much computation and additional hardware circuit. The validity of the proposed algorithm is verified through experimental results.

An I-V Circuit with Combined Compensation for Infrared Receiver Chip

  • Tian, Lei;Li, Qin-qin;Chang, Shu-juan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.875-880
    • /
    • 2018
  • This paper proposes a novel combined compensation structure in the infrared receiver chip. For the infrared communication chip, the current-voltage (I-V) convert circuit is crucial and important. The circuit is composed by the transimpedance amplifier (TIA) and the combined compensation structures. The TIA converts the incited photons into photocurrent. In order to amplify the photocurrent and avoid the saturation, the TIA uses the combined compensation circuit. This novel compensation structure has the low frequency compensation and high frequency compensation circuit. The low frequency compensation circuit rejects the low frequency photocurrent in the ambient light preventing the saturation. The high frequency compensation circuit raises the high frequency input impedance preserving the sensitivity to the signal of interest. This circuit was implemented in a $0.6{\mu}m$ BiCMOS process. Simulation of the proposed circuit is carried out in the Cadence software, with the 3V power supply, it achieves a low frequency photocurrent rejection and the gain keeps 109dB ranging from 10nA to $300{\mu}A$. The test result fits the simulation and all the results exploit the validity of the circuit.

A Study on the location of Compensation Capacitor and Capacitance in the Concrete Slab Track (콘크리트 슬래브궤도에서 보상 커패시터의 위치 및 전기용량에 대한 연구)

  • Kim, Min-Seok;Lee, Sang-Hyeok;Ko, Jun-Seog;Lee, Jong-Woo;Jo, Su-Ik;Yu, Jin-Young
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.879-891
    • /
    • 2009
  • Impedance of rails is increased by the magnetic coupling between rails and reinforcing bars in the concrete slab track. Currently, the current of track circuit has been compensated by installing the compensation capacitors on track circuit because of increasing the impedance of rails. In case of a rapid transit railway, the compensation capacitors are installed every 20[m] to compensate the current of track circuit in the concrete slab track. Because the interval of one block for a rapid transit railway is as long as 1500[m], the compensation capacitors are installed about the number of 70$\sim$75 on track circuit. However, in case the compensation capacitors are broken over the number of three, it is a problem that the amplitude of current is under standard amplitude of current which is 0.8[A]. In this paper, it was suggested installing a compensation capacitor by using resonance phenomenon on the concrete slab track. We represent the electrical model of track circuit and the four terminal network, calculate the parameters demanded for the electrical model in the concrete slab track. Also, we computed the position and capacitance of the compensation capacitor about 2040[Hz], 2400[Hz], 2760[Hz], 3120[Hz] which currently is the track circuit frequency in the Gyeongbu rapid transit railway and demonstrated the validity of it, using the Matlab and PSpice program.

  • PDF

Current Compensation Method of a Three Phase PWM Converter under Distorted Source Voltages (왜곡된 전원 전압 하에서 삼상 PWM 컨버터의 전류 보상 기법)

  • Park, Nae-Chun;Mok, Hyung-Soo;Ji, Jun-Keun;Kim, Sang-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.352-359
    • /
    • 2008
  • This paper proposes a current compensation method of a three phase PWM converter. The phase angle of utility voltage is essential to control a PWM converter. In the case of using synchronous reference frame PLL to detect the phase angle of the distorted source, harmonics of source voltage cause the phase angle to be distorted. PWM converter control by the distorted phase angle results in input current harmonics. This paper proposes a current compensation method which can limit THD of Input currents below to 5% that is the harmonic current requirements by IEEE std. 519. Its validity is verified by simulation and experiment.

Feed-Forward Compensation Technique in Stationary Reference Frame for the Enhanced Disturbance Rejection Performance in Parallel Operation of Double-Conversion UPSs (이중 변환 UPS의 병렬 운전 시 외란 저감 성능 향상을 위한 정지 좌표계 상의 전향 보상 기법)

  • Ryu, Hyo-Jun;Yoon, Young-Doo;Mo, Jae-Sung;Choi, Seung-Cheol;Woo, Tae-Gyeom
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.5
    • /
    • pp.367-375
    • /
    • 2022
  • Generally, a proportional-resonant controller is used to eliminate steady-state errors during the voltage-current control of a double-conversion uninterruptible power supply (UPS) in a stationary reference frame. Additionally, the feed-forward control compensating for the load current, which can be considered a disturbance of the voltage controller, can be used to improve the disturbance rejection performance. However, during the parallel operation of UPSs, circulating current can occur between UPS modules when performing both feed-forward control and droop control because feed-forward control reduces the circulating current impedance. This study proposes a feed-forward compensation technique that considers the impedance of circulating current. An additional feed-forward compensation technique is developed to enhance the disturbance rejection performance. The validity of the proposed feed-forward compensation technique is verified by the experiment results of the parallel operation of a 500 W double-conversion UPS module.