• Title/Summary/Keyword: current Harmonics

Search Result 897, Processing Time 0.025 seconds

Design of Modified Slip-Mode Frequency Shift Islanding Detection Method for Power Quality Improvement (Slip-Mode Frequency Shift 단독운전 검출 기법의 정상상태 전력 품질 개선)

  • Kim, Dong-Uk;Kim, Sungmin
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.539-547
    • /
    • 2018
  • Grid-connected inverter is required to cut off the power supplied to the grid at the islanding condition, immediately. For this reason, an islanding detection is an indispensable function for grid-connected distributed generation system. Slip-Mode frequency Shift (SMS) islanding detection method is very popular method to determine the grid state. SMS method supplies the reactive power to the load according to the grid frequency. In the islanding condition of grid, this injected reactive power pulls out the grid frequency from the allowable range, then the inverter system can detect the islanding condition of the grid. The SMS method can detect the islanding state well and does not generate any harmonics of the grid current. However, the reactive power would be generated and the power quality is reduced even though the grid is not islanding condition, but normal condition. In this paper, a modified SMS method is proposed to remove the reactive power in the normal condition. The performance of the proposed method is evaluated by 600W single phase inverter experimental results.

Improved instantaneous Following Control Function for High Power Factor PWM Matrix Converter (고역율 PWM 매트릭스 컨버터의 개선된 순시추종 제어함수)

  • Kim, Kwang-Tae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.3
    • /
    • pp.35-43
    • /
    • 2005
  • Matrix converters have been studied for eliminating dc link of conventional converter-inverter system, and various undulation strategy have been proposed. Therefore, matrix converter have no energy storage component except for small ac later for the elimination of switching ripple, and can be made compact and highly reliable compare with the do link inverter system. Matrix converter, however, directly connected the input and the output terminals by bidirectional static switch. As a result if the input voltage are asymmetrical, and contain harmonics, the influence of the distortions directly appear on the output terminal. This problem is a major obstacle to the matrix converter. A new control method using average comparison strategy have been proposed in this paper. This control method realizes sinusoidal input and output current unity input displacement factor regardless of load power factor. Moreover, compensation of the asymmetrical and/or harmonic containing input voltage is automatically realized, and calculation time of control function is reduced.

Efficiency and Power Factor Improvement of Induction Motor Using Single-Phase Back Rectifier (단상 강압 정류기를 이용한 유도전동기의 효율 및 역률 개선)

  • 문상필;이현우;서기영
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.4
    • /
    • pp.22-29
    • /
    • 2002
  • Usually, much harmonics are included and cause harmonic loss of motor, torque pulsation, electro-magnetic noise and shock etc. by switching function of inverter when drive induction motor variableness inside. It applied partial resonant Buck converter and three phase voltage type SPWM inverter circuit to induction motor driving system in this paper that see to solve such problem. Changed operation condition variously to do input current of circuit that propose sine-wave by unit power factor almost and capacitor supplied bringing back to life voltage by power supply arranging properly assistance diode and electric power switching. Power factor and efficiency improved as that minimize variation of input at power supply voltage polarity reverse by that add voltage reversal function. Also, by using output filter, reduced harmonic of output line to line voltage components, and introduce state space analysis and forecast operation of rectifier. Such all items confirmed validity through simulation and an experiment.

Efficiency Improvement of an Electronic Ballast for HID Lamps (HID 램프용 전자식 안정기의 효율 개선)

  • 이성희;이치환;권우현
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.2
    • /
    • pp.9-17
    • /
    • 2002
  • A high-efficiency electronic ballast for HID lamps is presented. The ballast consists of a PFC and a resonant inverter. To reduce losses of the ballast, DC link voltage should be determined by taking into account the peak voltage of lamp and the maximum flux density should be kept 0.2[T] on all of inductors. AR inductor at bridge diode is employed in order to remove currant harmonics from PFC. An inductor is connected in series with an electrolytic capacitor at DC link to reject high-frequency current. The acoustic resonance is eliminated using the stead spectrum technique. The electronic ballast for 250[W] metal-halide discharge lamp is implemented and 96[%] efficiency, no acoustic resonance and low conducted EMI level are accomplished.

A Regeneration Inverter for Traction Applications with a Active Power Filter (능동전력필터를 가진 지하철 회생인버터 시스템)

  • Won, Chung-Yuen;Jang, Su-Jin;Kim, Yuen-Chung;Lee, Byoung-Kuk;Bae, Chang-Hwan;Kim, Yong-Ki
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.5
    • /
    • pp.25-32
    • /
    • 2006
  • This paper proposes a regeneration inverter system, which can regenerate the excessive power form do bus line to ac source for traction system. The proposed regeneration inverter system for dc traction can reduce harmonics which are included to ac current source. The regeneration inverter is operated as two modes. In the regeneration inverter mode, it can recycle regenerative energy caused by decelerating tractions and in the active power filter mode, it can compensate harmonic distortion produced by the rectifier substation. In this paper, the regeneration inverter uses PWM DC/AC inverter algorithm and the active power filter uses p-q theory. From the informative simulation and experimental results, which are performed wiith a prototype rated 3.7[kw], it can expected that the proposed system can be effectively applied in the real traction system rated 100[kw].

Simulation Model of Harmonics Injection Sensorless Technique for Permanent Magnet Synchronous Motor (영구자석 동기 전동기의 고조파 주입 센서리스 기법 시뮬레이션 모델)

  • Yoon, Jin-Woo;Lee, Dong-Myung
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.67-71
    • /
    • 2020
  • In this study, a simulation model of the harmonic injection sensorless control technique is proposed. This model is suitable for the sensorless technique of low-speed area operation of motors. The motor of this model is permanent magnet motor. For sensorless control, 1kHz square wave is injected. The change in motor constant according to rotor position is realized by having different d-q inductance values. Sensorless techniques is implemented through functions of Simulink and models provided by Simulink libraries. It is shown that the harmonic component contained in the current is extracted using a filter, and the angle of the permanent magnet of the motor is detected using the extracted waveform. The validity of the simulation model is demonstrated through the estimated motor angle waveform and the related waveforms of the motor control applied to the 1kW permanent magnet motor.

Highly Linear Wideband LNA Design Using Inductive Shunt Feedback

  • Jeong, Nam Hwi;Cho, Choon Sik;Min, Seungwook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.1
    • /
    • pp.100-108
    • /
    • 2014
  • Low noise amplifier (LNA) is an integral component of RF receiver and frequently required to operate at wide frequency bands for various wireless system applications. For wideband operation, important performance metrics such as voltage gain, return loss, noise figure and linearity have been carefully investigated and characterized for the proposed LNA. An inductive shunt feedback configuration is successfully employed in the input stage of the proposed LNA which incorporates cascaded networks with a peaking inductor in the buffer stage. Design equations for obtaining low and high impedance-matching frequencies are easily derived, leading to a relatively simple method for circuit implementation. Careful theoretical analysis explains that input impedance can be described in the form of second-order frequency response, where poles and zeros are characterized and utilized for realizing the wideband response. Linearity is significantly improved because the inductor located between the gate and the drain decreases the third-order harmonics at the output. Fabricated in $0.18{\mu}m$ CMOS process, the chip area of this wideband LNA is $0.202mm^2$, including pads. Measurement results illustrate that the input return loss shows less than -7 dB, voltage gain greater than 8 dB, and a little high noise figure around 6-8 dB over 1.5 - 13 GHz. In addition, good linearity (IIP3) of 2.5 dBm is achieved at 8 GHz and 14 mA of current is consumed from a 1.8 V supply.

Development of a 3 kW Grid-tied PV Inverter With GaN HEMT Considering Thermal Considerations (GaN HEMT를 적용한 3kW급 계통연계 태양광 인버터의 방열 설계 및 개발)

  • Han, Seok-Gyu;Noh, Yong-Su;Hyon, Byong-Jo;Park, Joon-Sung;Joo, Dongmyoung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.5
    • /
    • pp.325-333
    • /
    • 2021
  • A 3 kW grid-tied PV inverter with Gallium nitride high-electron mobility transistor (GaN HEMT) for domestic commercialization was developed using boost converter and full-bridge inverter with LCL filter topology. Recently, many GaN HEMTs are manufactured as surface mount packages because of their lower parasitic inductance characteristic than standard TO (transistor outline) packages. A surface mount packaged GaN HEMT releases heat through either top or bottom cooling method. IGOT60R070D1 is selected as a key power semiconductor because it has a top cooling method and fairly low thermal resistances from junction to ambient. Its characteristics allow the design of a 3 kW inverter without forced convection, thereby providing great advantages in terms of easy maintenance and high reliability. 1EDF5673K is selected as a gate driver because its driving current and negative voltage output characteristics are highly optimized for IGOT60R070D1. An LCL filter with passive damping resistor is applied to attenuate the switching frequency harmonics to the grid-tied operation. The designed LCL filter parameters are validated with PSIM simulation. A prototype of 3 kW PV inverter with GaN HEMT is constructed to verify the performance of the power conversion system. It achieved high power density of 614 W/L and peak power efficiency of 99% for the boost converter and inverter.

High-resolution Spiral-scan Imaging at 3 Tesla MRI (3.0 Tesla 자기공명영상시스템에서 고 해상도 나선주사영상)

  • Kim, P.K.;Lim, J.W.;Kang, S.W.;Cho, S.H.;Jeon, S.Y.;Lim, H.J.;Park, H.C.;Oh, S.J.;Lee, H.K.;Ahn, C.B.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.10 no.2
    • /
    • pp.108-116
    • /
    • 2006
  • Purpose : High-resolution spiral-scan imaging is performed at 3 Tesla MRI system. Since the gradient waveforms for the spiral-scan imaging have lower slopes than those for the Echo Planar Imaging (EPI), they can be implemented with the gradient systems having lower slew rates. The spiral-scan imaging also involves less eddy currents due to the smooth gradient waveforms. The spiral-scan imaging method does not suffer from high specific absorption rate (SAR), which is one of the main obstacles in high field imaging for rf echo-based fast imaging methods such as fast spin echo techniques. Thus, the spiral-scan imaging has a great potential for the high-speed imaging in high magnetic fields. In this paper, we presented various high-resolution images obtained by the spiral-scan methods at 3T MRI system for various applications. Materials and Methods : High-resolution spiral-scan imaging technique is implemented at 3T whole body MRI system. An efficient and fast higher-order shimming technique is developed to reduce the inhomogeneity, and the single-shot and interleaved spiral-scan imaging methods are developed. Spin-echo and gradient-echo based spiral-scan imaging methods are implemented, and image contrast and signal-tonoise ratio are controlled by the echo time, repetition time, and the rf flip angles. Results : Spiral-scan images having various resolutions are obtained at 3T MRI system. Since the absolute magnitude of the inhomogeneity is increasing in higher magnetic fields, higher order shimming to reduce the inhomogeneity becomes more important. A fast shimming technique in which axial, sagittal, and coronal sectional inhomogeneity maps are obtained in one scan is developed, and the shimming method based on the analysis of spherical harmonics of the inhomogeneity map is applied. For phantom and invivo head imaging, image matrix size of about $100{\times}100$ is obtained by a single-shot spiral-scan imaging, and a matrix size of $256{\times}256$ is obtained by the interleaved spiral-scan imaging with the number of interleaves of from 6 to 12. Conclusion : High field imaging becomes increasingly important due to the improved signal-to-noise ratio, larger spectral separation, and the higher BOLD-based contrast. The increasing SAR is, however, a limiting factor in high field imaging. Since the spiral-scan imaging has a very low SAR, and lower hardware requirements for the implementation of the technique compared to EPI, it is suitable for a rapid imaging in high fields. In this paper, the spiral-scan imaging with various resolutions from $100{\times}100$ to $256{\times}256$ by controlling the number of interleaves are developed for the high-speed imaging in high magnetic fields.

  • PDF

Highly Linear Wideband LNA Design Using Inductive Shunt Feedback (Inductive Shunt 피드백을 이용한 고선형성 광대역 저잡음 증폭기)

  • Jeonng, Nam Hwi;Cho, Choon Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.11
    • /
    • pp.1055-1063
    • /
    • 2013
  • Low noise amplifiers(LNAs) are an integral component of RF receivers and are frequently required to operate at wide frequency bands for various wireless systems. For wideband operation, important performance metrics such as voltage gain, return loss, noise figures and linearity have been carefully investigated and characterized for the proposed LNA. An inductive shunt feedback configuration is successfully employed in the input stage of the proposed LNA which incorporates cascaded networks with a peaking inductor in the buffer stage. Design equations for obtaining low and high input matching frequencies are easily derived, leading to a relatively simple method for circuit implementation. Careful theoretical analysis explains that poles and zeros are characterized and utilized for realizing the wideband response. Linearity is significantly improved because the inductor between gate and drain decreases the third-order harmonics at the output. Fabricated in $0.18{\mu}m$ CMOS process, the chip area of this LNA is $0.202mm^2$, including pads. Measurement results illustrate that input return loss shows less than -7 dB, voltage gain greater than 8 dB, and a little high noise figure around 7~8 dB over 1.5~13 GHz. In addition, good linearity(IIP3) of 2.5 dBm is achieved at 8 GHz and 14 mA of current is consumed from a 1.8 V supply.