• Title/Summary/Keyword: current Harmonics

Search Result 897, Processing Time 0.031 seconds

Analysis of current harmonics in the High PowerFactor Boost-type Rectifier (고역률 Boost-type 정류기의 고조파 분석)

  • Bae, Chang-Han;Lee, Kyo-Beum;Lee, Kwang-Won
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.1969-1972
    • /
    • 1998
  • Harmonic analysis is important for PWM rectifiers with high powerfactor. This paper describes the harmonic analysis of input current in high powerfactor boost-type rectifier. The magnitudes of the harmonics are obtained through the current wave from analysis and the effect of source reactance is also analyzed.

  • PDF

A Study on the Characteristic of Capacitor Current by Voltage Harmonics (전압 고조파에 의한 커패시터 전류 특성 해석)

  • Kim, Jong-Gyeum;Kim, Sung-Hyun;Kim, Il-Jung
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.2
    • /
    • pp.148-153
    • /
    • 2009
  • As the increasing of non-linear load, we have a growing interest in power quality. Power quality has come to the voltage quality. Voltage harmonics consist in at the PCC by the non-linear load. Capacitor is generally used for the power compensation and as the passive filter by the serial connection with reactor. Capacitor has low impedance as the frequency increases, so easily fall down by the harmonic component of non-linear load. Small voltage of low-order acts on quite a few at the capacitor by the current increase. In this paper, we measured the magnitude and angle of voltage at the PCC and calculated under the same condition. we checked out that lower voltage of higher order produces current magnification.

The Controllable Current-Source Active Power Filter (가변 전류형 능동 전력 필터)

  • Kim, Ho-Jin;Cho, Han-Duk;Kim, Hong-Seong;Choe, Gyu-Ha;Kim, Han-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1077-1080
    • /
    • 1992
  • In this paper suggested methods for current control in active filter are using the triangular carriers which were composed of independently generated threefold carriers and controllable current source which compensates the harmonics generated independently from the types of the load with instantaneous amplitude adjusting from the maximum magnitude of the compensating currents. And the 2-nd order high pass passive filter connected to the source finally supplies pure sinusoidal waves by suppressing the residual harmonics which cannot removed by the active filter. As the typical load which generates the harmonics, a rectifier was set and the system was also designed by simulations and implementations.

  • PDF

The APF System to reduce both Voltage and Current Harmonics (전압 및 전류고조파 동시 저감을 위한 APF 시스템)

  • Shon, Jin-Geun;Kim, Byung-Jin;Na, Chae-Dong;Lee, Sung-Bum
    • Proceedings of the KIEE Conference
    • /
    • 2003.07e
    • /
    • pp.46-48
    • /
    • 2003
  • A single phase voltage-controlled active power filter(APF) is introduced to improve power quality and to reduce harmonic generated from nolinear loads. Real and reactive power control scheme was addressed using a new power circuit model. By analyzing the reactive power, a unit power factor control scheme was proposed. Simulation and experiment results using a nonlinear diode rectifier showed that the voltage-controlled APF, unlike the current-controlled APF, can reduce the voltage harmonics as well as current harmonics. Also the results showed that the input power factor was greatly improved.

  • PDF

3-Phase Hybrid Series Active Power Filter with Dynamic Voltage Restorer (DVR 기능을 갖는 3상 하이브리드형 직렬 능동전력필터)

  • Han Seok-Woo;Choe Gyu-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.598-602
    • /
    • 2002
  • This paper presents the 3-phase hybrid series active power filter with dynamic voltage restorer(DVR) which serve as an energy buffer and current harmonics blocking resistor connected to sensitive loads, such as, to compensate voltage dips and current harmonics in power distribution system. The DVR is to inject a dynamically controlled voltage generated by a forced commutated converter in series to the bus voltage by means of a booster transformer. The momentary amplitudes of the three injected phase voltages are controlled such as to eliminate any detrimental effects of a bus fault to the load voltage. The proposed system is able to simultaneously compensate current harmonics, voltage fluctuating and voltage unbalance in power distribution systems. The reference phase angle detected by synchronized with the positive sequence component of the unbalanced source by using symmetrical component transformation. The effectiveness of proposed system is verified by the computer simulation.

  • PDF

Reducing Harmonics of 3-Phase Asymmctic Recnher Current using a PAM mcthod (3상 비대칭 정류회로의 PAM 방식을 이용한 고주파 저감법)

  • Oh, Hoon;Yoon, Yang-Woong;Park, Hyun-Chul
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1995.10a
    • /
    • pp.105-109
    • /
    • 1995
  • In this paper, we persents a new PAM method without the input transformer for reducing harmonics in input AC line currents of converter. This system can reduce the harmonics like conventional 12-pulse converter. the dual bridge circuits are controlled with the shifted firing angle and connected 2 tap interphase reactor. the input current using 2 tap changing on interphase reactor is controlled with the different two values in order to make the input current waveform 12 pulses. The chracteristics of this system were confirmed through the computer simulation and the experiments.

  • PDF

Design and Implementation of Solar PV for Power Quality Enhancement in Three-Phase Four-Wire Distribution System

  • Guna Sekar, T.;Anita, R.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.75-82
    • /
    • 2015
  • This paper presents a new technique for enhancing power quality by reducing harmonics in the neutral conductor. Three-Phase Four-Wire (3P4W) system is commonly used where single and three phase loads are connected to Point of Common Coupling (PCC). Due to unbalance loads, the 3P4W distribution system becomes unbalance and current flows in the neutral conductor. If loads are non-linear, then the harmonic content of current will flow in neutral conductor. The neutral current that may flow towards transformer neutral point is compensated by using a series active filter. In order to reduce the harmonic content, the series active filter is connected in series with the neutral conductor by which neutral and phase current harmonics are reduced significantly. In this paper, solar PV based inverter circuit is proposed for compensating neutral current harmonics. The simulation is carried out in MATLAB/SIMULINK and also an experimental setup is developed to verify the effectiveness of the proposed method.

A Study on the Transient Characteristics in 765kV Untransposed Transmission Systems (765kV 비연가 송전계통 과도 특성에 관한 고찰)

  • 안용진;강상희
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.7
    • /
    • pp.397-404
    • /
    • 2004
  • This paper describes a study of transient characteristics in 765kV untransposed transmission lines. As the 765(kV) system can carry bulk power, some severe fault on the system nay cause large system disturbance. The large shunt capacitance and small resistance of 765kv transmission line make various difficulties for its protection. These problems including current difference between sending and receiving terminals on normal power flow, low order harmonic current component in fault current and current transformer saturation due to the long DC time constant of the circuit etc. must be investigated and solved. The analysis of transient characteristics at sending terminal has been carried out for the single phase to ground fault and 3-phase short fault, etc. The load current, charging current in normal condition and line flows, fault current, THD(Total Harmonic Distortion) of harmonics, time constants have been analysed for the 765kV untransposed transmission line systems.

Analysis of Optimized Injection Method for Active Power Filter of Current Injection Type (전류주입식 능동전력 필터를 위한 최적주입방법의 해석)

  • 박민호;최규하
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.7
    • /
    • pp.296-303
    • /
    • 1986
  • The active filter of current injection type is the device which eliminates the harmonics in ac line by injecting the harmonic compensating current into the ac side. And its harmonic reduction performance is entirely dependent on the control scheme of the current-fed inverter and the harmonic compensating current becomes the PWM wave by the inverter. This PWM compensating current can be determined by selecting the switching function properly which eliminates the harmonics up to any order with using no independent sources. The new injection current model is derived by the proposed method which is called the optimized injection method. The overall characteristics of the proposed method are investigated through digital computation and the feasibility is proved with experimental results obtained from the Z-80 microcomputer control of the active filter.

  • PDF

A Clamp Type Sensor for AC/DC Low Current Measurement (클램프 형 직교류 저 전류 측정 센서)

  • 박영태;유광민
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.12
    • /
    • pp.1045-1053
    • /
    • 2002
  • This paper describes characteristics of the developed current sensor by means of two identically wound magnetic cores forming a clamp like for measurement of a low DC, or AC current. This sensor consists of peak value detectors, a sensor of an electrically compensated current transformer type, a reference alternating voltage, Precision measuring circuits to measure the output signals of sensor with harmonics, and can be measured up to 2 A at DC, or AC current. The current sensor shows a measurement accuracy of less than 0.3% in the frequency range 40 Hz - 10 HBz. The resolution and sensitivity of the sensor were evaluated 0.1 mA and 10 mV/mA, respectively.