• Title/Summary/Keyword: curing, fly ash

Search Result 283, Processing Time 0.024 seconds

Strength evaluation of concrete with fly ash and GGBFS as cement replacing materials

  • Chore, H.S.;Joshi, M.P.
    • Advances in concrete construction
    • /
    • v.3 no.3
    • /
    • pp.223-236
    • /
    • 2015
  • Concrete is the most widely used material of construction. Concrete gained the popularity as a construction material due to the easy availability of its component materials, the easy formability, strength and rigidity upon setting and curing.In construction industry, strength is the primary criterion in selecting a concrete for a particular application. Now a days, the substantial amount of waste materials, containing the properties of the Pozzolana, is being generated from the major industries; and disposal of such industrial wastes generated in abundance is also a serious problem from the environmental and pollution point of view. On this backdrop, efforts are made by the researchers for exploring the possible utilization of such waste materials in making the sustainable construction material. The present paper reports the experimental investigations to study the strength characterization of concrete made from the pozzolanic waste materials. For this purpose, the Pozzolanic materials such as fly ash and ground granulated blast furnace slag were used as a cement replacing materials in conjunction with ordinary Portland cement. Equal amount of these materials were used in eight trial mixes with varying amount of cement. The water cement ratio was also varied. The chemical admixture was also added to improve the workability of concrete. The compressive strengths for 7, 28, 40 and 90 days' were evaluated whereas the flexural and tensile strengths corresponding to 7, 28 and 40 days were evaluated. The study corroborates that the pozzolanic materials used in the present investigation along with the cement can render the sustainable concrete.

Effect of low-calcium fly ash on sulfate resistance of cement paste under different exposure conditions

  • Zhang, Wuman;Zhang, Yingchen;Gao, Longxin
    • Advances in concrete construction
    • /
    • v.7 no.3
    • /
    • pp.175-181
    • /
    • 2019
  • Low-calcium fly ash (LCFA) were used to prepare cement/LCFA specimens in this study. The basic physical properties including water demand, fluidity, setting time, soundness and drying shrinkage of cement/LCFA paste were investigated. The effects of curing time, immersion time and wet-dry cycles in 3% $Na_2SO_4$ solution on the compressive strength and the microstructures of specimens were also discussed. The results show that LCFA increases the water demand, setting time, soundness of cement paste samples. 50% and 60% LCFA replacement ratio decrease the drying shrinkage of hardened cement paste. The compressive strength of plain cement specimens decreases at the later immersion stage in 3% $Na_2SO_4$ solution. The addition of LCFA can decrease this strength reduction of cement specimens. For all specimens with LCFA, the compressive strength increases with increasing immersion time. During the wet-dry cycles, the compressive strength of plain cement specimens decreases with increasing wet-dry cycles. However, the pores in the specimens with 30% and 40% LCFA at early ages could be large enough for the crystal of sodium sulfate, which leads to the compressive strength increase with the increase of wet-dry cycles in 3% $Na_2SO_4$ solution. The microstructures of cement/LCFA specimens are in good agreement with the compressive strength.

Experimental study on geopolymer concrete prepared using high-silica RHA incorporating alccofine

  • Parveen, Parveen;Singhal, Dhirendra;Jindal, Bharat Bhushan
    • Advances in concrete construction
    • /
    • v.5 no.4
    • /
    • pp.345-358
    • /
    • 2017
  • This paper describes the experimental investigation carried out to develop geopolymer concrete using rice husk ash (RHA) along with alccofine. The study reports the fresh and hardened properties of the geopolymer concrete (GPC) activated using alkaline solution. GPC were prepared using different RHA content (350, 375 and $400kg/m^3$), the molarity of the NaOH (8, 12 and 16M). The specimens were cured at $27^{\circ}C$ and $90^{\circ}C$. GPC was activated using NaOH, $Na_2SiO_3$, and alccofine. Prepared GPC samples were tested for compressive and splitting tensile strengths after 3, 7 and 28 days. RHA was suitable to produce geopolymer concrete. Results indicate that behavior of GPC prepared with RHA is similar to fly ash based GPC. Workability and strength can be improved by incorporating the alccofine. Further, alccofine and heat curing improve the early age properties of the GPC. Heat curing is responsible for the initial polymerization of GPC which leads to high workability and improved mechanical properties of the GPC. High strength can be achieved by using the high concentration alkaline solution in terms of molarity and at elevated heat curing. Further, RHA based geopolymer concrete has tremendous potential as a substitute for ordinary concrete.

Effect of curing on alkalinity and strength of cement-mortar incorporating palm oil fuel ash

  • Payam Shafigh;Sumra Yousuf;Belal Alsubari;Zainah Ibrahim
    • Advances in concrete construction
    • /
    • v.15 no.3
    • /
    • pp.191-202
    • /
    • 2023
  • Palm oil fuel ash (POFA) is a newly emerging pozzolanic material having high amount of silica content. Various forms of POFA were used in cement-based materials (CBMs) in replacement of cement in different dosages of low and high volume. Although, there are many researches on POFA to be used in concrete and mortar, however, this material was not practically used in the construction industry. Engineers and designers need to be confident to use any new developed materials by knowing all engineering properties at short and long terms. As durability concern, concrete pH value is one of the most important properties. Portland cement produces are alkaline initially, however, it may be reduced due to aging and its components. It is believed that by incorporation of supplementary cementitious materials in CBMs the pH value reduces due to utilization of Ca(OH)2 in pozzolanic reaction. This study is the first attempts to understand the pH value of mortars containing up to 30% POFA under different curing conditions and its changes with time. The results were also compared with the pH of ground granulated ballast furnace slag (GGBFS) and fly ash (FA) content mortars. In addition, the compressive strength of different mortars under different curing conditions were also studied. The results showed that the pH value of control mix (without cementitious materials) was more than all the blended cement mortars indifferent curing conditions at the same ages. However, there was a reducing trend in the pH value of all mortar mixes containing POFA.

Physical and Mechanical Properties of Cement Mortar with Hwangtoh and Fly ash (생황토와 플라이 애시를 혼입한 시멘트 모르타르의 물리.역학적 특성)

  • Im, Sung-Soo;Youn, Joon-No;Sung, Chan-Yong
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.213-216
    • /
    • 2002
  • This study is performed to examine the physical and mechanical properties of cement mortar with Hwangtoh and fly ash. The unit weight is in the range of $2,068kg/m^3{\sim}2,137kg/m^3$ and $1,899kg/m^3{\sim}2,045kg/m^3$, the compressive strength is in the range o $92kgf/cm^2{\sim}458kgf/cm^2$ and $88kgf/cm^2{\sim}316kgf/cm^2$ and the pulse velocity is in the range o $3,195m/s{\sim}4,255m/s$ and $2,670m/s{\sim}3,953m/s$ in water and dry curing, respectively. Also it is decreased with increase of the content of Hwangtoh.

  • PDF

An Experimental Study on the Property of Strength for kinds and Replacement ratio of Admixture under Low Temperature (저온 환경하에서의 혼화재 종류 및 대체율에 따른 콘크리트의 강도발현특성에 관한 연구)

  • Kim, Ho-Soo;Jun, Soon-Je;Ban, Seong-Soo;Choi, Sung-Woo;Ryu, Deuk-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.687-690
    • /
    • 2005
  • Recently, to consider financial and constructive aspect, usage of Admixture, like Blast- Furnace Slag and Fly-Ash, are increased. These mineral admixtures, a by-product of steel industry, have many advantage, to reduce the heat of hydration, increase in ultimate strength, improve workability and etc. But it also reduces early-age strength, so it is prevented from using of Blast-Furnace Slag at cold-weather-concrete. In this study, for the purpose of increasing usage of mineral admixtures, like Blast-Furnace Slag and Fly ash, it is investigated the strength properties of concrete subjected to under low temperature According to this study, if early curing is carried out before having frost damage, the strength of concrete, subjected to frost damage, is recovered. And to consider increasing effect of strength, it is more effective to use of mineral admixtures, especially to use blast furance slag.

  • PDF

An Experimental Study on The Strength Property of the Concrete Using Recycled Aggregate Mixed Fly Ash in Steam Curing (증기양생한 플라이애쉬 혼입 재생골재 콘크리트의 강도특성에 관한 실험적 연구)

  • 심종성;박성재;이희철;김동희
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.326-329
    • /
    • 2003
  • In practice, recycled aggregate is not used for a structural member due to its high absorbability and abrasion. It is, however, highly expected that the usage of recycled aggregate increases as the processing technique of the recycled aggregate progresses. In this study herein, the compressive strength of the recycled aggregate concrete was investigated. Coarse aggregate was replaced with 100% of the recycled aggregate, and cement and fine aggregate was replaced with various amount. The specimen was steam-cured at $80^{\circ}C$. It was shown that the concrete can obtain desirable strength when fine aggregate was replaced with up to 60% of recycled fine aggregate, and when cement was replaced with up to 15% of fly ash.

  • PDF

Flowability of High Flowable Concrete with Fly Ash and Lime Powder (플라이 애시와 석회석 미분말을 혼용한 고유동 콘크리트의 유동 특성)

  • Cho Il-Ho;Sung Chan-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.4
    • /
    • pp.23-30
    • /
    • 2006
  • This study is performed to evaluate flowability of high flowable concrete using ordinary portland cement, crushed coarse aggregate, crushed sand, sea sand, fly ash, lime powder and superplasticizer. The slump flow and air content are increased with increasing the content of lime powder. But, the O-type funneling time and Box-type passing are decreased with increasing the content of lime powder. The slump flow, air content, O-type funneling time, Box-type passing and L-type filling of target compressive strength 21-27 MPa and 35-42 MPa at curing age 28 days are 47-50 cm and 56-60 cm, 4.2-5.5% and 4.0-5.7%, 8-12s and 5-10s, 4.3-5.0 cm and 3.4-5.0 cm, and excellent, respectively. These concrete can be used for high flowable concrete.

Physical and Mechanical Properties of Permeable Polymer Concrete Utilizing industrial By-Products

  • Sung, ChanYong;Kim, In Su
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42
    • /
    • pp.78-84
    • /
    • 2000
  • Permeable polymer concrete can be applied to roads, sidewalks, river embankment, drain pipes, conduits, retaining walls, yards, parking lots, plazas, interlocking blocks, etc. This study is to explore a possibility of utilizing industrial by-products, a blast furnace slag and a fly ash, as fillers for permeable polymer concrete. Different mixing proportions are tried to find an optimum mixing proportion of permeable polymer concrete. The tests are carried out at 20$\pm$1$^{\circ}C$ and 60$\pm$2$^{\circ}C$ relative humidity. At 7 days of curing, compressive, flexural and splitting tensile strengths and water permeability ranged between 239~285kgf/$\textrm{cm}^2$, 107~133kgf/$\textrm{cm}^2$, 37~46kgf/$\textrm{cm}^2$ and 4.612~5.913$\ell$/$\textrm{cm}^2$/h, respectively. It is concluded that the blast furnace slag and fly ash can be used in permeable polymer concrete.

  • PDF

A Study on the Properties of Carbonation in the Multi-Component Concrete According to the Substitution Ratios of the Mineral Admixtures (혼화재료 치환에 따른 다성분계콘크리트의 탄산화 특성에 관한 연구)

  • Park, Young-Shin;Park, Jae-Myung;Ahn, Jae-Chul;Lee, Sea-Hyun;Lee, Moon-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.193-196
    • /
    • 2005
  • In this study, the purpose is to suggest the data on mixing ratio which effects on the carbonation of concrete by replacing various admixture such as silica fume, fly ash, slag powder. Thus, we have experimented the accelerated test on the carbonation related to hardened body of the concrete which was admixed by slag powder, silica fume, fly ash and it was cured for 4 weeks in carbonation accelerator after 28 days curing water. The result of this experiment showed that carbonation speed increased highly when admixtures be used to replacing by growing of admixture ratio. especially, the test sample which was replaced with silica fume 15$\%$ and slag powder 40$\%$, was promoted highly to carbonation.

  • PDF