• Title/Summary/Keyword: curcumin

Search Result 334, Processing Time 0.035 seconds

Improved Anti-Cancer Effect of Curcumin on Breast Cancer Cells by Increasing the Activity of Natural Killer Cells

  • Lee, Hwan Hee;Cho, Hyosun
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.6
    • /
    • pp.874-882
    • /
    • 2018
  • Curcumin is known to possess various biological functions, including anti-inflammatory, anti-oxidative, and anti-cancer activities. Natural killer (NK) cells are large lymphocytes that directly kill cancer cells. However, many aggressive cancers, including breast cancer, were reported to escape the successful killing of NK cells in a tumor microenvironment. In this study, we investigated the anti-cancer effect of curcumin in coculture of human breast carcinoma MDA-MB-231 and NK (NK-92) cells. We found that curcumin had an immune-stimulatory effect on NK-92 by increasing the surface expression of the $CD16^+$ and $CD56^{dim}$ population of NK-92. We confirmed that the cytotoxic effect of NK-92 on MDA-MB-231 was significantly enhanced in the presence of curcumin, which was highly associated with the activation of Stat4 and Stat5 proteins in NK-92. Finally, this improved anticancer effect of curcumin was correlated with decreased expression of pErk and PI3K in MDA-MB-231.

Curcumin: a Polyphenol with Molecular Targets for Cancer Control

  • Qadir, Muhammad Imran;Naqvi, Syeda Tahira Qousain;Muhammad, Syed Aun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.6
    • /
    • pp.2735-2739
    • /
    • 2016
  • Curcumin, is a polyphenol from Curcuma longa (turmeric plant), is a polyphenol that belongs to the ginger family which has long been used in Ayurveda medicines to treat various diseases such as asthma, anorexia, coughing, hepatic diseases, diabetes, heart diseases, wound healing and Alzheimer's. Various studies have shown that curcumin has anti-infectious, anti-inflammatory, anti-oxidant, hepatoprotective, thrombosuppressive, cardio protective, anti-arthritic, chemo preventive and anti-carcinogenic activities. It may suppress both initiation and progression stages of cancer. Anticancer activity of curcumin is due to negative regulation of inflammatory cytokines, transcription factors, protein kinases, reactive oxygen species (ROS) and oncogenes. This review focuses on the different targets of curcumin to treat cancer.

Antiproliferative Effects of Curcumin Analogues;Comparative antiproliferative activities of curcumin, tetrahydrocurcumin, dimethoxycurcumin and bis-demethoxycurcumin in human leukemia HL-60 cells

  • Jeong, Seon-Choong;Chong, Myong-Soo;Koo, Bon-Soon;Pae, Hyun-Ock;Chung, Hun-Taeg;Lee, Ki-Nam
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • Curcumin and its analogues(Tetrahydrocurcumin THC, demethoxycurcumin ; BDMC and dimethoxycurcumin DiMC) were compared for their ability to inhibit the growth of human leukemia HL-60 cells. The growth of HL-60 cells was inhibited by curcumin, DeMC and DiMC, but not by THC lacking ${\alpha},{\beta}-unsaturated$ carbonyl groups thus suggesting that ${\alpha},{\beta}-unsaturated$ carbonyl groups are crucial for antiproliferative activity. The order of antiproliferative activity was DiMC, curcumin and BDMC indicating that the number of methoxy groups on the aromatic rings of the active compounds plays an important role in enhancing anti-proliferating activity. In comparison with cellular uptake of the active compounds, uptake capacity was found to be highest with DiMC, followed by curcumin and BDMC. Therefore, it is most likely that the differential antiproliferative activities of DiMC, curcumin and BDMC are associated with their capacities of cellular uptake resulting in building up of enough concentration inside the cells.

  • PDF

Studies of Anti-inflammation of Liriopis Tuber to Autoimmunune Diabetes in NOD Mice (NOD 당뇨병 생쥐에 미치는 맥문동의 항염증 효과)

  • Roh, Seong-Soo;Choi, Hak-Joo;Kim, Dong-Hee;Seo, Young-Bae
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.4
    • /
    • pp.766-770
    • /
    • 2008
  • Bone is a dynamic tissue that is regulated by the balance between bone-resorbing osteoclasts and bone-forming osteoblasts. Curcumin isolated from Kang-hwang (Turmeric) is widely used as a foodstuff, cosmetic, and medicine. However, the effect of curcumin isolated from Kang-hwang in osteoclast differentiation remains unknown. In this study, we sought to examine the role of curcumin in osteoclast differentiation. Here we show that curcumin greatly inhibited RANKL-mediated osteoclast differentiation in osteoclast precursors without cytotoxicity. RANKL induced the phosphorylation of p38 and JNK mitogen-activated protein kinase (MAPK) and mediated $I-{\kappa}B$ degradation in bone marrow macrophages (BMMs). However, RANKL-mediated p38 MAPK phosphorylation was inhibited by the addition of curcumin. Curcumin inhibited the mRNA expression of TRAP, c-Fos, and NFATc1 in BMMs treated with RANKL. Furthermore, the protein expression of c-Fos and NFATc1 induced by RANKL was suppressed by curcumin treatment. Taken together, our results suggest that curcumin may have a potential therapeutic role in bone-related diseases such as osteoporosis by inhibiting osteoclast differentiation.

Curcumin Induces Caspase Mediated Apoptosis in JURKAT Cells by Disrupting the Redox Balance

  • Gopal, Priya Kalyan;Paul, Mausumi;Paul, Santanu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.1
    • /
    • pp.93-100
    • /
    • 2014
  • Background: Curcumin has has been reported to exert anti-inflammatory, anti-oxidation and anti-angiogenic activity in various types of cancer. It has also been shown to induce apoptosis in leukemia cells. We aimed to unravel the role of the redox pathway in Curcumin mediated apoptosis with a panel of human leukemic cells. Materials and Methods: In this study in vitro cytotoxicity of Curcumin was measured by MTT assay and apoptotic effects were assessed by annexin V/PI, DAPI staining, cell cycle analysis, measurement of caspase activity and PARP cleavage. Effects of Curcumin on intracellular redox balance were assessed using fluorescent probes like $H_2DCFDA$, JC1 and an ApoGSH Glutathione Detection Kit respectively. Results: Curcumin showed differential anti-proliferative and apoptotic effects on different human leukemic cell lines in contrast to minimal effects on normal cells. Curcumin induced apoptosis was associated with the generation of intracellular ROS, loss of mitochondrial membrane potential, intracellular GSH depletion, caspase activation. Conclusions: As Curcumin induces programmed cell death specifically in leukemic cells it holds a great promise as a future therapeutic agent in the treatment of leukemia.

Curcumin Inhibits Human Non-small Cell Lung Cancer A549 Cell Proliferation Through Regulation of Bcl-2/Bax and Cytochrome C

  • Li, Yue;Zhang, Shuai;Geng, Jian-Xiong;Hu, Xiao-Yang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.8
    • /
    • pp.4599-4602
    • /
    • 2013
  • We intended to study the mechanism of the inhibitory action of curcumin on human non-small cell lung cancer A549 cell. The cell growth was determined by CCK-8 assay, and the results indicated that curcumin inhibited the cell proliferation in a concentration dependent manner. And to further confirm the relative anti-cancer mechanism of curcumin, RT-PCR was carried out to analysis the expression of relative apoptotic proteins Bax, Bcl-2. We found that curcumin could up-regulate the expression of Bax but down-regulate the expression of Bcl-2 in A549 cells. In addition, curcumin affect the mitochondrial apoptosis pathway. These results suggested that curcumin inhibited cancer cell growth through the regulation of Bcl-2/Bax and affect the mitochondrial apoptosis pathway.

Effects of Curcumin, the Active Ingredient of Turmeric(Curcuma longa), on Regulation of Glutamate-induced Toxicity and Activation of the Mitogen-activated Protein Kinase Phosphatase-1 (MKP-1) in HT22 Neuronal Cell

  • Lee, Sang-Hyun;Yun, Young-Gab
    • Natural Product Sciences
    • /
    • v.15 no.1
    • /
    • pp.32-36
    • /
    • 2009
  • Glutamate causes neurotoxicity through formation of reactive oxygen species and activation of mitogen-activated protein kinase (MAPK) pathways. MAPK phosphatase-1 (MKP-1) is one of the phosphatases responsible for dephosphorylation/deactivation of three MAPK families: the extracellular signal-regulated kinase-1/2 (ERK-1/2), the c-Jun N-terminal kinase-1/2 (JNK-1/2), and the p38 MAPK. In this report, the potential involvement of MKP-1 in neuroprotective effects of curcumin, the active ingredient of turmeric (Curcuma longa), was examined using HT22 cells. Glutamate caused cell death and activation of ERK-1/2 but not p38 MAPK or JNK-1/2. Blockage of ERK-1/2 by its inhibitor protected HT22 cells against glutamate-induced toxicity. Curcumin attenuated glutamate-induced cell death and ERK-1/2 activation. Interestingly, curcumin induced MKP-1 activation. In HT22 cells transiently transfected with small interfering RNA against MKP-1, curcumin failed to inhibit glutamate-induced ERK-1/2 activation and to protect HT22 cells from glutamate-induced toxicity. These results suggest that curcumin can attenuate glutamate-induced neurotoxicity by activating MKP-1 which acts as the negative regulator of ERK-1/2. This novel pathway may contribute to and explain at least one of the neuroprotective actions of curcumin.

Fabrication of Electrospun Antibacterial Curcumin-loaded Zein Nanofibers (전기방사를 사용한 항균성 컬큐민 함유 Zein 나노섬유의 제조)

  • Bui, Hieu Trung;Chung, Ok Hee;Park, Jun Seo
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.744-751
    • /
    • 2014
  • Electrospinning was used to load curcumin (a natural compound that has antiinflammatory properties) into zein nanofibers. An emulsifier, Tween 80, was combined with curcumin in the zein nanofibers. The morphology of the curcumin-loaded zein nanofibers (CLZNFs) was observed using field emission scanning electron microscopy. Investigation of curcumin released from the zein nanofibers into phosphate buffer saline at pH 7 indicated that the Tween 80 had increased the amount of curcumin released from the CLZNFs. The antibacterial activity of the CLZNFs against Staphylococcus aureus (S. aureus) was determined by measuring the optical density of bacterial solutions containing CLZNFs. The zein nanofibers fabricated with 10 wt% surfactant and 1.6 wt% curcumin showed high (i.e., 83%) efficiency in inhibiting the growth of S. aureus in the solution incubated for 21 h. These results suggest that the electrospun CLZNFs show potential application as antibacterial nonwoven mats.

Inhibitory Effect of Curcumin on Nitric Oxide Production in Lipopolysaccharide-Stimulated RAW264.7 Cells and Its Suppressive Mechanism (대식세포주 RAW264.7 세포에서 Curcumin의 Lipopolysaccharide에 의한 Nitric Oxide 생성 억제 효과)

  • Lee, Yong-Gyu;Cho, Jae-Youl
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.6
    • /
    • pp.451-456
    • /
    • 2007
  • Curcumin, a polyphenolic antioxidant purified from turmeric, has been known to possess various biological activities such as anti-oxidative, anti-inflammatory and anti-cancer effects. In this study, we have explored anti-inflammatory effect of curcumin using Gram (-) bacterium-derived endotoxin (lipopolysaccharide: LPS) and macrophage cell line RAW264.7. Curcumin suppressed NO production in LPS-activated RAW264.7 cells in a dose-dependent manner, Curcumin also blocked the activation of $NF-{\kappa}B$ but not AP-1 according to luciferase assay. Furthermore, this compound suppressed the phosphorylation of a series of intracellular signaling components such as Src, JAK-2, Akt, IKK and $I{\kappa}B{\alpha}$ under LPS stimulation in a time dependent manner, Therefore, our data suggest that curcumin was able to protect the host from Gram(-) bacterial-infection-mediated inflammatory symptoms.

Inhibitory Effect of TREK Channel Blockers on Sperm Viability and Motility of Korean Native Bull (TREK통로 차단제의 한우 정자 생존성 및 운동성 억제 효과)

  • Kang, Dawon;Kim, Eun-Jin;Han, Jaehee
    • Journal of Embryo Transfer
    • /
    • v.32 no.3
    • /
    • pp.243-248
    • /
    • 2017
  • Antioxidants have been added to cryoprotectant or in vitro culture medium for sperm to reduce the detrimental damage, such as reactive oxygen species. However, curcumin, an antioxidant, shows dual effect on the viability and progressive motility of bovine sperm exposed to hydrogen peroxide. Low concentration of curcumin increases sperm viability and progressive motility, whereas high concentration of curcumin reduces them. This study was performed to identify whether TREK-1 channel is related to low sperm viability and motility induced by high concentration of curcumin. Curcumin reduced TREK-1 channel activity in a dose-dependent manner. TREK-1 channel was expressed in sperm obtained from Korean native bull. Treatment with TREK-1 channel blockers, such as curcumin, fluoxetine, $GdCl_3$, and spadin, significantly reduced sperm viability and motility (p < 0.05). However, TREK-1 channel activators showed different effect; linoleic acid showed an increase in sperm viability and motility, and wogonin did not affect them. These results show that TREK-1 channel is involved in the regulation of sperm viability and motility. In particular, high concentration of curcumin might reduce sperm viability and progressive motility of Korean native bull through blockage of TREK-1 channel.