DOI QR코드

DOI QR Code

Fabrication of Electrospun Antibacterial Curcumin-loaded Zein Nanofibers

전기방사를 사용한 항균성 컬큐민 함유 Zein 나노섬유의 제조

  • Bui, Hieu Trung (Department of Chemical Engineering and Research Center of Chemical Technology, Hankyong National University) ;
  • Chung, Ok Hee (Department of Physics, Sunchon National University) ;
  • Park, Jun Seo (Department of Chemical Engineering and Research Center of Chemical Technology, Hankyong National University)
  • ;
  • 정옥희 (순천대학교 물리학과) ;
  • 박준서 (한경대학교 화공과 및 응용화학기술연구소)
  • Received : 2014.03.29
  • Accepted : 2014.05.25
  • Published : 2014.11.25

Abstract

Electrospinning was used to load curcumin (a natural compound that has antiinflammatory properties) into zein nanofibers. An emulsifier, Tween 80, was combined with curcumin in the zein nanofibers. The morphology of the curcumin-loaded zein nanofibers (CLZNFs) was observed using field emission scanning electron microscopy. Investigation of curcumin released from the zein nanofibers into phosphate buffer saline at pH 7 indicated that the Tween 80 had increased the amount of curcumin released from the CLZNFs. The antibacterial activity of the CLZNFs against Staphylococcus aureus (S. aureus) was determined by measuring the optical density of bacterial solutions containing CLZNFs. The zein nanofibers fabricated with 10 wt% surfactant and 1.6 wt% curcumin showed high (i.e., 83%) efficiency in inhibiting the growth of S. aureus in the solution incubated for 21 h. These results suggest that the electrospun CLZNFs show potential application as antibacterial nonwoven mats.

Keywords

References

  1. R. L. Thangapazham, A. Sharma, and R. K. Maheshwari, Adv. Exp. Med. Biol., 595, 343 (2007). https://doi.org/10.1007/978-0-387-46401-5_15
  2. K.-Y. Yang, L. C. Lin, T.-Y. Tseng, S.-C. Wang, and T.-H. Tsai, J. Chromatogr. B, 853, 183 (2007). https://doi.org/10.1016/j.jchromb.2007.03.010
  3. J. S. Jurenka, Altern. Med. Rev., 14, 141 (2009).
  4. M. Panchatcharam, S. Miriyala, V. Gayathri, and L. Suguna, Mol. Cell. Biochem., 290, 87 (2006). https://doi.org/10.1007/s11010-006-9170-2
  5. P. Ratanajiajaroen, A. Watthanaphanit, H. Tamura, S. Tokura, and R. Rujiravanit, Eur. Polym. J., 48, 512 (2012). https://doi.org/10.1016/j.eurpolymj.2011.11.020
  6. C. J. Pan, J. J. Tang, Y. J. Weng, J. Wang, and N. Huang, J. Control. Release, 116, 42 (2006). https://doi.org/10.1016/j.jconrel.2006.08.023
  7. C. J. Pan, Z. Y. Shao, J. J. Tang, J. Wang, and N. Huang, J. Biomed. Mater. Res. A, 82A, 740 (2007). https://doi.org/10.1002/jbm.a.31108
  8. X. Wang, Y. Jiang, Y.-W. Wang, M.-T. Huang, C.-T. Ho, and Q. Huang, Food Chem., 108, 419 (2008). https://doi.org/10.1016/j.foodchem.2007.10.086
  9. Z. Ma, A. Haddadi, O. Molavi, A. Lavasanifar, R. Lai, and J. Samuel, J. Biomed. Mater. Res. A, 86A, 300 (2008). https://doi.org/10.1002/jbm.a.31584
  10. M. Gou, K. Men, H. Shi, M. Xiang, J. Zhang, J. Song, J. Long, Y. Wan, F. Luo, X. Zhao, and Z. Qian, Nanoscale, 3, 1558 (2011). https://doi.org/10.1039/c0nr00758g
  11. D. Li and Y. Xia, Adv. Mater., 16, 1151 (2004). https://doi.org/10.1002/adma.200400719
  12. A. L. Andrady, Science and Technology of Polymer Nanofibers, John Wiley & Sons, Inc., Hoboken, New Jersey, 2007.
  13. I. K. Kim and J. H. Yeum, Polymer(Korea), 35, 553 (2011).
  14. X. Xu, L. Yang, X. Xu, X. Wang, X. Chen, Q. Liang, J. Zeng, and X. Jing, J. Control. Release, 108, 33 (2005). https://doi.org/10.1016/j.jconrel.2005.07.021
  15. S. Agarwal, J. H. Wendorff, and A. Greiner, Polymer, 49, 5603 (2008). https://doi.org/10.1016/j.polymer.2008.09.014
  16. S. Sahoo, L. T. Ang, J. C.-H. Goh, and S.-L. Toh, J. Biomed. Mater. Res. A, 93A, 1539 (2010).
  17. M. Jannesari, J. Varshosaz, M. Morshed, and M. Zamani, Int. J. Nanomedicine, 6, 993 (2011).
  18. J. Zeng, X. Xu, X. Chen, Q. Liang, X. Bian, L. Yang, and X. Jing, J. Control. Release, 92, 227 (2003). https://doi.org/10.1016/S0168-3659(03)00372-9
  19. Y. Yang, X. Li, W. Cui, S. Zhou, R. Tan, and C. Wang, J. Biomed. Mater. Res. A, 86A, 374 (2008). https://doi.org/10.1002/jbm.a.31595
  20. J. Quan, Y. Yu, C. Branford-White, G. R. Williams, D.-G. Yu, W. Nie, and L.-M. Zhu, Colloids Surf. B. Biointerfaces, 88, 304 (2011). https://doi.org/10.1016/j.colsurfb.2011.07.006
  21. S. Torres-Giner, E. Gimenez, and J. M. Lagaron, Food Hydrocolloids, 22, 601 (2008). https://doi.org/10.1016/j.foodhyd.2007.02.005
  22. S. Torres-Giner, M. J. Ocio, and J. M. Lagaron, Carbohydr. Polym., 77, 261 (2009). https://doi.org/10.1016/j.carbpol.2008.12.035
  23. F. Kayaci and T. Uyar, Carbohydr. Polym., 90, 558 (2012). https://doi.org/10.1016/j.carbpol.2012.05.078
  24. J.-M. Yang, L.-S. Zha, D.-G. Yu, and J. Liu, Colloids Surf. B. Biointerfaces, 102, 737 (2013). https://doi.org/10.1016/j.colsurfb.2012.09.039
  25. D. Brahatheeswaran, A. Mathew, R. G. Aswathy, Y. Nagaoka, K. Venugopal, Y. Yoshida, T. Maekawa, and D. Sakthikumar, Biomed. Mater., 7, 045001 (2012). https://doi.org/10.1088/1748-6041/7/4/045001
  26. K. Holmberg, B. Jonsson, B. Kronberg, and B. Lindman, in Surfactants and Polymers in Aqueous Solution, John Wiley & Sons, Ltd, 2003, pp 1-37.
  27. C. Kriegel, K. M. Kit, D. J. McClements, and J. Weiss, Polymer, 50, 189 (2009). https://doi.org/10.1016/j.polymer.2008.09.041
  28. T. Lin, H. Wang, H. Wang, and X. Wang, Nanotechnology, 15, 1375 (2004). https://doi.org/10.1088/0957-4484/15/9/044
  29. T. T. T. Nguyen, O. H. Chung, and J. S. Park, Carbohydr. Polym., 86, 1799 (2011). https://doi.org/10.1016/j.carbpol.2011.07.014
  30. Y. Li, L. T. Lim, and Y. Kakuda, J. Food Sci., 74, C233 (2009). https://doi.org/10.1111/j.1750-3841.2009.01093.x
  31. P. Hurtado-Lopez and S. Murdan, J. Microencaps., 23, 303 (2006). https://doi.org/10.1080/02652040500444149

Cited by

  1. Encapsulation of bioactive compound in electrospun fibers and its potential application pp.1520-5118, 2017, https://doi.org/10.1021/acs.jafc.7b02956
  2. 전기방사를 이용한 향나무 추출물 함유 PU 나노웹의 특성 vol.41, pp.1, 2014, https://doi.org/10.5850/jksct.2017.41.1.131