• Title/Summary/Keyword: cup product

Search Result 78, Processing Time 0.022 seconds

DERIVED CUP PRODUCT AND (STRICTLY) DERIVED GROUPS

  • Lee, Dae-Woong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.791-807
    • /
    • 1998
  • The purpose of this paper is to construct a ring with unity under the derived cup product on the cochain groups of the inverse system and an isomorphism which is useful as the computation of a derived group by deleting the suitable terms in the directed set D. Moreover we apply these results to the K-theory.

  • PDF

Influence of Process Design Scheme on Product Qualities in Cylindrical Cup Drawing (원형컵 드로잉의 공정설계 변화가 제품품질에 미치는 영향)

  • 이재명;김종호;원시태
    • Transactions of Materials Processing
    • /
    • v.11 no.8
    • /
    • pp.716-723
    • /
    • 2002
  • A systematic investigation for the process design in deep drawing is necessary to improve the quality of drawn cups. This study concentrates mainly on the influence of process desing scheme on the product qualities in cylindrical cup drawing. Three types of process design scheme were chosen in this study. Case 1 is to draw a finished cup of 50mm in diameter in one stage, Case 2 and Case 3 are redrawing the first drawn cups of 55, 65mm in diameter to the final size respectively. Through experiments the maximum drawing force in two-stage cup drawing can be reduced up to 24% as compared with that of one-stage cup drawing. In addition, Case 3 process results in better product qualities than the other two processes in terms of the distributions of thickness and hardness.

Causal Knowledge Integration Method for Product Design Simulation (제품 디자인 시뮬레이션을 위한 인과 지식 통합 방법 개발)

  • Kim, Yun Seon;Kwon, Ohbyung
    • Journal of the Korea Society for Simulation
    • /
    • v.23 no.4
    • /
    • pp.85-95
    • /
    • 2014
  • Simulation for product design requires a lot of causal knowledge. Hence, knowledge integration is required for obtaining a new knowledge from existing knowledge. For example, a user requests knowledge for the heating cup. However, the knowledge base only has knowledge for heating and cup, not heating cup. At his situation, knowledge integration can generate a new heating cup knowledge from existing heating and cup knowledge. Therefore, the user can obtain the knowledge for heating cup. Hence, this study aims to propose a novel knowledge integration method for product design.

Influence of Process Design Scheme on Product Qualities in Cylindrical Cup Drawing (원형컵 드로잉의 공정설계 변화에 따른 제품품질에 미치는 영향)

  • 이재명;이상민;최영윤;류호연;김종호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.82-85
    • /
    • 2002
  • A systematic investigation for process design in deep drawing is necessary for quality improvement of drawn cups. This study has been concentrated mainly on the influence of process design scheme on product qualities in cylindrical cup drawing. Three types of process design scheme were chosen in this study. That is, Case 1 is to finish drawing a cup of 50m in diameter in one stage, Case 2 and Case 3 are redrawing the drawn cups of 55, 65 mm in diameter to the final size respectively. Though experiments the maximum drawing force in two-stage cup drawing could be reduced up to 35% as compared with that of one-stage cup drawing. In addition, the Case 2 and Case 3 processes showed better product qualities than the Case 1 process when comparing distributions of thickness, hardness, dimensional accuracy.

  • PDF

A Study on the Effect of Powder Forging for Cup-shaped Product

  • Park, Chul-Woo;Park, Jong-Ok;Kim, Young-Ho
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.4
    • /
    • pp.37-42
    • /
    • 2002
  • The purpose of this paper is comparing the forging effect according to the shape of preforms of cup shaped powder forging product, and extending the application of powder forging technology to more complicated cup-shaped products like pistons. In order to achieve this, preforms are provided by compacting, sintering, and machining to 5 different shapes, then forged to the final shape of products. The workability for sintered aluminium powder material was examined and confirmed its slope was 0.5 as known. Density and strain loci of forged products are also evaluated and compared. On the basis of the results, the most effective shape of preform was proposed. The preform for the piston which is 50mm in diameter was prepared and hot forged successfully to the final product.

Comparison of Energy Consumptions for Various Forming Processes (성형 가공 차이에 의한 에너지 소비량 비교)

  • Yin, Z.H.;Zhang, Y.J.;Chae, M.S.;Park, B.C.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.333-336
    • /
    • 2008
  • There are many different kinds of forming processes to make a tubular product such as hydroforming and tube drawing. However, we should consider a better forming process in view point of energy consumption and $CO_2$ emission to save our earth. In this paper we have conducted FEM simulations to the various forming processes for sheet and tubular products to compare their energy consumptions. One example is tubular product and the other for drawn cup. From the comparisons of total energy for hydrofroming and tube sinking processes, hydroforming is consumed more energy than tube drawing. Also the cup drawing from sheet metal and tube sinking for the cup with flange indicate that the tube sinking is better than cup drawing of sheet metal in energy consumption.

  • PDF

A Study on Forging Effect of Cup-Shaped Powder Forging Product According to the Shape of Preforms (컵형상 분말단조품의 예비성형체 형상에 따른 단조효과에 관한 연구)

  • Park, Jong-Ok;Kim, Young-Ho;Cho, Jin-Rae;Lee, Jong-Heun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.63-68
    • /
    • 2000
  • The purpose of this paper is to compare the forging effects according th the shape of preforms of cup shaped powder forging product, and extend the application of powder forging technology to more complicated cup-shaped products like pistons. In order to this, preforms are provided by compacting, sintering, and machining in various shapes, then forged to final shape of products. The workability for sintered aluminium powder material is examined. Density and strain loci of forged products are compared, and the most effective shape of preform is proposed. The preform for a piston of 50mm in diameter is provided and hot forged to final product.

  • PDF

New Design of Cylindrical Cup Deep Drawing by Forming Analysis (원형컵 디프 드로잉의 성형해석에 의한 공정설계)

  • 정완진;김종호;류제구
    • Transactions of Materials Processing
    • /
    • v.12 no.7
    • /
    • pp.647-653
    • /
    • 2003
  • A systematic approach for the process design in deep drawing is necessary to improve the quality of drawn cups. This study concentrates mainly on the influence of process design strategy on the product quality. Different types of process design were chosen from initial blank of 100mm in diameter to make final cup of 50mm in diameter. In order to make this cup, we used 2-stage deep drawing. Forming analyses are carried out to find out better design in terms of drawing force. It is proposed that the process design, in which maximum drawing forces during successive operations are equal, is a more desirable one. Through experiment, it is found that the proposed case shows equivalent values in terms of maximum drawing force during successive operations in real process and can achieve the best product quality in terms of dimensional accuracy. Thus, it is shown that proposed design is very effective in the improvement of quality in drawn cups and may be extended to deep drawing with more stages.

Study on the Physical Properties of New Developed Teat Cup Liner Compounds (신개발 유두컵 라이너용 고무조성물의 물리적 특성 조사)

  • Lee, Jeong-Chi
    • Journal of Veterinary Clinics
    • /
    • v.24 no.2
    • /
    • pp.201-207
    • /
    • 2007
  • The teat cup liner compounds with improved physical property were developed using tri-polymer blend of natural rubber(NR), ethylene propylene diene monomer rubber(EPDM) and butyl rubber, and the changes of the physical properties of compounds were measured under various conditions such as standard, thermal, alkaline detergent and acid solutions aging conditions. The hardness of the new teat cup liner compound 1 was 50 and that of the compound 2 was 51 under standard condition. The tensile strength and elongation of the new compound 1 were $154kgf/cm^2$ and 675% under the standard condition, respectively. Also, those of the new compound 2 were 180 kgf/cm and 634% under the same condition. Their hardness were increased about $2{\sim}6%$ and the tensile strength and elongation were decreased about 10% under the $25^{\circ}C$ water and detergent solutions. Even though the new teat cup liner compounds exhibited so much decreased tensile properties under the $105^{\circ}C$ thermal aged condition, they sustained more stable aged physical properties including tensile strength and elongation than those of imported teat cup liner materials. Consequently, the new teat cup liner compounds would give prolonged lift cycle if they are used as a teat cup liner product.

An Experimental Approach and Finite Element Analysis on Rectangular Cup Drawing Process of Milli-Component Forming (소형부품의 사각 컵 드로잉 성형 해석에 관한 실험적 연구)

  • 구태완;강범수
    • Transactions of Materials Processing
    • /
    • v.10 no.6
    • /
    • pp.471-477
    • /
    • 2001
  • Milli-structure components are classified as a component group whose size is between macro and micro scales, that is, about smaller than 20mm and larger than 1mm. The forming of these components has a typical phenomenon of bulk deformation with thin sheets because of the forming size. In this study, milli-structure rectangular cup drawing is analyzed and measured using the finite element method and experiments. Special containers or cases of cellular phone vibrator to save installation space are produced by rectangular-shaped drawing. A systematic approach is established for the design and the experiment of the forming processes for rectangular milli-structure cases. To verify the simulation results, the experimental investigations were also carried out on a real industrial product. The numerical analysis by FEM shows good agreement with the experimental results in view of the deformation shape of the product.

  • PDF