• 제목/요약/키워드: cup drawing

Search Result 219, Processing Time 0.026 seconds

Optimum Tool Design in a Multi-stage Rectangular Cup Drawing and Ironing Process with the Large Aspect Ratio by the Finite Element Analysis (유한요소해석을 이용한 세장비가 큰 직사각컵 다단계 디프 드로잉-아이어닝 공정의 최적 금형설계)

  • Kim, Se-Ho;Kim, Seung-Ho;Huh, Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1077-1084
    • /
    • 2002
  • Optimum tool design is carried out fur a multi-stage rectangular cup deep-drawing and ironing process with the large aspect ratio. Finite element simulation is carried out to investigate deformation mechanisms with the initial design made by an expert. The analysis considers the deep drawing process with ironing for the thickness control in the cup wall. The analysis reveals that the difference of the drawing ratio within the cross section and the irregular contact condition produce non-uniform metal flow to cause wrinkling and severe extension. For remedy, the modification guideline is proposed in the design of the tool and the process. Analysis results confirm that the modified tool design not only improves the quality of a deep-drawn product but also reduces the possibility of failure. The numerical result shows fair coincidence with the experimental one. After tryouts of the tool shape, the rectangular cup has been produced in the transfer press.

The Effect of Tool Surface Treatment and Temperature on Deep Drawability of AZ31 Magnesium Alloy Sheet (툴 표면처리 및 온도가 AZ31 마그네슘 판재의 드로잉성에 미치는 영향)

  • Choo D. G.;Lee J. H.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.118-121
    • /
    • 2005
  • The square cup drawing of magnesium alloy AZ31 $(aluminum\;3\%,\;Zinc\;1\%)$ sheets was studied by experimental approach in various temperatures (200, 250, 300, 350, $400^{\circ}C$) when blank holding force (BHF) was controlled in real-time. And so on, the drawability was measured with the different die and punch coating. The square cup drawing test was performed by three different coated punches (CrN, TiCN, Non-coated). BHF was set about 2.0 KN, forming speed was 50 mm/min, blank thickness were 0.5, 1.0mm and the cup size was 40 mm by 60 mm after forming. The experimental data of square cup drawing test show that the tools coating and temperature were effect on the drawbility.

  • PDF

Multi-stage Finite Element Inverse Analysis of Elliptic Cup Drawing Processes with the Large Aspect Ratio (세장비가 큰 타원형 컵 성형 공정의 다단계 유한요소 역해석)

  • Kim, S.H.;Kim, S.H.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.9 no.3
    • /
    • pp.304-312
    • /
    • 2000
  • An inverse finite element approach is employed to efficiently design the optimum blank shape and intermediate shapes from the desired final shape in multi-stage elliptic cup drawing processes. The multi-stage deep-drawing process is difficult to design with the conventional finite element analysis since the process is very complicate with the conventional finite element analysis since the process is very complicated with intermediate shapes and the numerical analysis undergoes the convergence problem even with tremendous computing time. The elliptic cup drawing process needs much effort to design sine it requires full three-dimensional analysis. The inverse analysis is able to omit all complicated and tedious analysis procedures for the optimum process design. In this paper, the finite element inverse analysis provides the thickness strain distribution of each intermediate shape through the multi-stage analysis. The multi-stage analysis deals with the convergence among intermediate shapes and the corresponding sliding constraint surfaces that are described by the analytic function of merged-arc type surfaces.

  • PDF

A Study on the Behavior of Wrinkles in Square Cup Drawing (사각용기 성형시 주름의 거동에 관한 연구)

  • Kim, Jin-Moo;Chung, Young-Min
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.616-620
    • /
    • 2001
  • The wrinkling in the flange and wall of a part is a predominent failure mode in stamping of sheet metal parts. In many cases this wrinkling may be eliminated by appropriate control of the blank holding force(BHF), but BHF affects the draw depth. Although the wrinkles of flange have been made in the incipient stage of drawing, if the height of wrinkles is maintained under a prescribed limit by decrease or extinction of wrinkles in the course of drawing, small BHP can be allowed so that the depth of drawing could be increased. Authors research the variation of the wrinkles in flange in the course of square cup drawing by using aluminium A1015 and aluminium alloy A5052.

  • PDF

Formability of Sheet Metal in Noncircular Cup Drawing(I) (for Rectangular Cross Section) (비원형 단면에 대한 판재 성형성(I) (직사각형 단면에 대하여))

  • Shin, J.H.;Kim, M.S.;Seo, D.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.1
    • /
    • pp.84-95
    • /
    • 1994
  • The effects of punch and blank shapes in the rectangular cup drawing process are examined experimentally to improve the formabilities. For this purpose, three blank shapes which are h-bl., G-bl., and T-bl., and five punch shape factors which are the ratios of two adjacent side lengths in rectangular cross section are adopted. The constructing methods of the three blank shapes are as follows. The h-bl. is designed by slip-line theory, and the G-bl. is selected for the similar shape to the punch. The T-bl. is obtained by the drawing method which is introduced in the technical references. The five punch shape factors are selected for length/width=1, 1.25, 1.5, 1.75 and 2. The experimental procedures are performed for all the above forming conditions to investigate and compare the formabilities. As a result, it is verified experimentally that the rectangular cups drawn by the h-bl. are more ideal than those drawn by G-bl. and T-bl.. They have not only higher limiting drawing ratio, more uniformity in drawn cup heights and more ideal thickness distributions, but also need relatively less maximum drawing forces.

  • PDF

Experimental Study on the Parameters Affect Cylindrical Cup Drawing Process (원형컵 드로잉 공정에 미치는 영향인지에 관한 실험적 연구)

  • 정동원;양경부;김광희
    • Transactions of Materials Processing
    • /
    • v.8 no.5
    • /
    • pp.449-453
    • /
    • 1999
  • Sheet metal forming process is a non-linearity problem which is affected by various process variables, such as geometric shape of punch and die, frictional characteristic, etc.. Therefore, the knowledge of the influence of the process variables is needed in the design of sheet metal working processes. In this paper, cylindrical cup drawing tests for blank holding force, punch speed and lubrication between sheet material and tool were carried out to investigate the influence upon sheet formability. Experimental results were discussed about the defects on the deformation behaviors during the forming process.

  • PDF

Formability Evaluation of Coated Steel Sheet and Uncoated Steel Sheet with Consideration of Friction Characteristics (마찰특성을 고려한 도금강판 및 무도금강판의 성형성 평가)

  • Lee K.S.;Lee J.M.;Kim B.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.251-252
    • /
    • 2006
  • Tensile and anisotropy test were performed to evaluate the mechanical properties of coated and uncoated steel. These results were used to predict the deference of formability between two sheets. Cup-drawing test was performed to verify formability of two sheets. Also, Cup-drawing test could predict the coefficient of friction and the forming limit. Finite Element Method of cup-drawing was performed to assess the deference between two sheets considering frictional characteristics. This result was compared with the former results.

  • PDF

Numerical Study of Square Cup Deep Drawing Accounting for Biaxial Tensile Property (판재의 이축인장 특성을 고려한 사각컵 딥드로잉 성형해석)

  • Ahn, D.C.;Kim, K.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.213-214
    • /
    • 2009
  • Recently the use of ferritic stainless steels for automotive exhaust system has been increased dramatically. A detailed knowledge of material behavior of ferritic stainless steel is important for successful manufacturing of exhaust systems. To achieve this goal, numerical study of square cup deep drawing for ferritic stainless steel sheet, type 409L was conducted with Yld2000-24. Uniaxial tensile test and hydraulic bulge test were performed to characterize plastic material behavior. Finite element simulation of square cup deep drawing was performed successfully.

  • PDF

A Study on the Deep Drawing of AZ31B Magnesium Sheet at Warm and Hot Temperature (AZ31B 마그네슘 판재의 온.열간 ?K드로잉에 관한 연구)

  • Kim, H.G.;Bae, J.W.;Choo, D.K.;Kang, C.G.
    • Transactions of Materials Processing
    • /
    • v.15 no.7 s.88
    • /
    • pp.504-511
    • /
    • 2006
  • The drawability of AZ31B magnesium sheet is estimated at various temperatures($200,\;250,\;300,\;350\;and\;400^{\circ}C$), and forming speed(20, 50, 100mm/min), thickness(0.5, 0.8, 1.0, 1.4mm). The deep drawing process of circular cup and square cup were used in forming experiments. Experimental and FEM analysis are performed to investigate drawability and affection of controlled blank holding force. Through the controlled blank holding force, drawability was improved. Limit drawing ratio is increased from 2.1 to 3.0 in circular cup drawing and change of thickness is decreased from 16.3 to 6.9%. This result is verified by FEM analysis. Through the observation of microstructure, the main cause is investigated as a quantity of the dynamic recrystallization.

A Study of Cup forming by double Stretch-Drawing Process (원통의 2단 인장드로잉 성형에 관한 연구)

  • 김영수;정태훈;일본명
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.406-411
    • /
    • 2003
  • It is clearly demonstrated that deeper cups could be formed by single and double stretch-drawings from smaller circular blanks due to such wall-thinning action than in the usual deep-drawing of larger blanks. From this fact, it is emphasized that the deep-drawability of a sheet metal Is not evaluated simply by the conventional L.D.R (limiting drawing ratio), but the depth of the drawn cup should also be taken into account. Many experimental data about various metals and thicknesses given in this paper offer a valuable information in this process for more general use which recommends to replace the conventional deep-drawing process by the stretch-drawing process both for single and double operations. In the single stretch-drawing, it is also confirmed that a deeper cup can be produced by raising the blank-holding force at later stage of operation.

  • PDF