• Title/Summary/Keyword: cumulative flow

Search Result 149, Processing Time 0.024 seconds

Research on the Evaluation of Impaired Waterbody using the Flowrate Group at TMDL Unit Watershed in Nakdong River Basin (수질오염총량관리 단위유역 유량그룹별 수체 손상 분석)

  • Hwang, Ha-Sun;Kim, Sang-Soo;Kim, Jin-Lee;Park, Bae-Kyung
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.6
    • /
    • pp.933-942
    • /
    • 2012
  • The purpose of this study is to evaluate the degree of waterbody impairment according to the flow conditions and present to the appropriate water quality improvement alternatives using observed water quality and flow for Total Maximum Daily Load (TMDL) implementation at 39 unit watersheds the nakdong river basin. Observed water quality data for 7 years are divided into five cumulative flow frequency group and comparing the each observed water quality data and TMDL Target water quality (TWQ) the last evaluate the water quality is impaired group. We found that the cumulative flow frequency group-specific the average excess rate of V group was the highest (32.86%), followed by the IV group (26.04%), group III (23.36%), II group (22.67%), I group (20.70%), the degree of impaired waterbody tended to be inversely proportional to the flow rate. Resulted from cumulative flow frequency group of impaired water quality assessment, 13 unit watersheds are impaired from a group IV and group V affected by point sources. Therefore, improvement of sewage discharge and the initial composition of the riparian buffer zone are needed. Nakbon F, Namkang D and Namkang E within 13 unit watersheds are impaired from group II and III affected by non-point sources. Therefore, application of Best Management Practices (BMPs) is needed for these watersheds. Evaluation of impaired waterbody using Cumulative flow frequency group is able to determine the extent of the judgment to TWQ exceeded by the flow conditions and helps proper setting Standard flow and planning pollutant reduction for TMDL.

Utilizing OpenFlow and sFlow to Detect and Mitigate SYN Flooding Attack

  • Nugraha, Muhammad;Paramita, Isyana;Musa, Ardiansyah;Choi, Deokjai;Cho, Buseung
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.8
    • /
    • pp.988-994
    • /
    • 2014
  • Software Defined Network (SDN) is a new technology in computer network area which enables user to centralize control plane. The security issue is important in computer network to protect system from attackers. SYN flooding attack is one of Distributed Denial of Service attack methods which are popular to degrade availability of targeted service on Internet. There are many methods to protect system from attackers, i.e. firewall and IDS. Even though firewall is designed to protect network system, but it cannot mitigate DDoS attack well because it is not designed to do so. To improve performance of DDOS mitigation we utilize another mechanism by using SDN technology such as OpenFlow and sFlow. The methodology of sFlow to detect attacker is by capturing and sum cumulative traffic from each agent to send to sFlow collector to analyze. When sFlow collector detect some traffics as attacker, OpenFlow controller will modify the rule in OpenFlow table to mitigate attacks by blocking attack traffic. Hence, by combining sum cumulative traffic use sFlow and blocking traffic use OpenFlow we can detect and mitigate SYN flooding attack quickly and cheaply.

The Prediction of Remodelling Timing Based on the Cash Flow of Permanent Rental Housing (영구임대주택의 현금흐름을 고려한 리모델링 시기 추정에 관한 연구)

  • Kim, Doo-Seok;Ha, Heon-Seok;Kim, Yong-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.4
    • /
    • pp.135-142
    • /
    • 2004
  • The purpose of this study is to predict remodeling timing of Permanent Rental Housing through historic data and cash flow analysis. For this aim, the study has estimated cash flow of Permanent Rental Housing considering initial construction costs, government supporting fund, rental incomes and maintenance expenses. Based on the expected cash flow analysis, reasonable remodeling timing is predicted for Permanent Rental Housing. The results of this study are as follows: (1) it is analyzed that building a8e of about 27 years is the best time for remodeling because cumulative surplus amounts reach maximum level, (2) it is required that remodeling should be made before 34 years of age roughly because cumulative surplus amounts change into minus from this time.

Analysis of the Difference of Flow Duration Curve according to the Cumulative Variation of the Daily Average Flow in Unit Watershed for TPLCs (총량관리 단위유역 일평균유량의 시계열 누적 변화에 따른 유량지속곡선 차이 분석)

  • Hwang, Ha-sun;Rhee, Han-pil;Seo, Ji-yeon;Choi, Yu-jin;Park, Ji- hyung;Shin, Dong-seok;Lee, Sung-jun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.6
    • /
    • pp.97-109
    • /
    • 2018
  • The LDC (Load Duration Curve) method can analyze river water quality changes according to flow rate and seasonal conditions. It is also possible to visually recognize whether the target water quality is exceeded or the size of the reduction load. For this reason, it is used for the optimal reduction of TPLCs and analysis of the cause of water pollution. At this time, the flow duration curve should be representative of the water body hydrologic curve, but if not, the uncertainty of the interpretation becomes big because the damaged flow condition is changed. The purpose of this study is to estimate the daily mean flow of the unit watershed using the HSPF model and to analyze the difference of the flow duration curves according to the cumulative daily mean flow rate using the NSE technique. The results show that it is desirable to construct the flow duration curve by using the daily average flow rate of at least 5 years although there is a difference by unit watershed. However, this is the result of the water bodies at the end of Han River basin watershed, so further study on various water bodies will be necessary in the future.

Analysis of Water bady Damage at Osu Stream Using the Flow-Loading Equation and 8-Day Intervals Cumulative Flow Duration Curve (유량-부하량 관계식과 8일 간격 누적유량지속곡선을 이용한 오수천의 수체 손상도 분석)

  • Lee, Young Sung;Kim, Young Suk;Han, Sung Wook;Seo, kwon ok;Lim, chang bok;Lee, Yeong Jae;Kim, Kyunghyun;Jung, Kang-Young
    • Journal of Environmental Science International
    • /
    • v.27 no.12
    • /
    • pp.1179-1193
    • /
    • 2018
  • The purpose of this study at water quality pollutants to propose proper management method for the Osu-A unit watershed which is the influent tributary located upstream of the Sumjin -river among the 13 unit watersheds in the Sumjin-river water system. Analyzed the correlation between flow-pollution loading and the correlation between land use type, BOD and TP items, and analyzed 8-day intervals Cumulative Flow Duration Curve (CFDC) and Load Duration Curve (LDC) to evaluate water quality damage. As a result, both BOD and TP were larger than 1 and the concentration of water pollutants increased with increasing flow. BOD was positively correlated with Urban and Field, and TP was positively correlated with Field with 0.710. As a result of the LDC, BOD was analyzed that the target water quality was achieved with the excess rate of less than 50%, and TP exceeded the target water quality by 50.1%. BOD usually exceeded the standard value (exceedance probability 50%) at low flow zone and On the other hand, TP usually exceeded the standard value at high flow zone. Monthly BOD (April to June) and TP (May to August) exceeded the standard. Sewage Wastewater treatment and non-point pollution control is Osu-A unit watersheds are effective in improving BOD and TP.

A Study on the Optimal Scheduling in n/m Flow Shop Scheduling : the Measure of Performance (n/m Flow Shop Scheduling에 있어서 최적 Scheduling에 관한 연구 - 평가척도를 중심으로 -)

  • 이근희;김준홍
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.1-13
    • /
    • 1981
  • This paper analyses the efficiency of performance measures from the point of total cost on the accuracy of due date around various measures of performance be in mainly use in the flow shop scheduling theory. For this purpose, complete enumeration method for small problems seems to be the only possible means of evaluation and analysis. Using of the above technique, calculates the 800 Scheduling Problems, and represents it by the cumulative distributions.

  • PDF

How to Implement 'Lean' Principles into Software Development Practice?: Visualization of Delays and Defects (린(Lean) 개념을 소프트웨어 개발 방법에 적용하기 위한 사례 연구: 낭비 제거의 가시화를 중심으로)

  • Hwang, Soon-Sam;Kim, Sung-K.
    • Information Systems Review
    • /
    • v.13 no.1
    • /
    • pp.61-74
    • /
    • 2011
  • Software industry still has many deep-seated problems. As a natural consequence, it may have to learn from best practices in more mature industry like manufacturing. An example is 'lean' software development which is defined as translation of 'lean manufacturing' principles to the software development domain. The principles include 'eliminate waste' and 'amplify learning.' It was much asserted that these principles are worth applying. Not much study, however, was done on how to practically implement these principles into software development practice. In this study we attempt to present a method in which project lead time and software defects are regarded as major targets of management and are visualized using Cumulative Flow Diagram. We further applied this method on actual projects. The result confirms that agile is positively effective on reducing wastes.

A Cumulative Injected Fuel Mass Measurement Under a Vehicle Driven Condition using Loadcells (차량주행 모사 조건에서 로드셀을 이용한 인젝터 누적 연료 분사량 측정)

  • Cho, Seung Keun;Lee, Choong Hoon
    • Journal of ILASS-Korea
    • /
    • v.21 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • A gasoline injector rig which can measure cumulative injected fuel mass under a vehicle driving condition was developed. The measurement system consists of an engine control unit (ECU), data acquisition (DAQ) and injected fuel collection system using loadcells. By supplying reconstructed sensor signals which simulate the real vehicle's sensor signals to the ECU, the ECU drives injectors as if they were driven in the vehicle. The vehicle's performance was computer simulated by using $GT-Suite^{(R)}$ software based on both engine part load performance and automatic transmission shift map. Throttle valve position, engine and vehicle speed, air mass flow rate et al. were computer simulated. The used vehicle driving pattern for the simulation was FTP-75 mode. For reconstructing the real vehicle sensor signals which are correspondent to the $GT-Suite^{(R)}$ simulated vehicle's performance, the DAQ systems were used. The injected fuel was collected with mess cylinders. The collected fuel mass in the mess cylinder with elapsed time after starting FTP-75 driving mode was measured using loadcells. The developed method shows highly improved performance in fast timing and accuracy of the cumulative injected fuel mass measurement under the vehicle driven condition.

A Study on the Development of Hot Rolling Process for 18Cr-10Mn-0.44N2 (18Cr-10Mn-0.44N2 고질소강의 열연공정개발에 관한 연구)

  • Kim, Y.D.;Cho, J.R.;Lee, J.W.;Bae, W.B.
    • Transactions of Materials Processing
    • /
    • v.20 no.4
    • /
    • pp.296-302
    • /
    • 2011
  • The objective of this paper is to determine the effect of process parameters on the behavior of a 18Cr-10Mn-$0.44N_2$ nitrogen steel sample deformed by hot rolling. Compression tests were carried out at high temperatures to determine the flow stresses needed for a finite element(FE) analysis. The strain rate, ranging from 0.1 to $1.0s^{-1}$, significantly affected the flow stress at temperatures higher than $1,000^{\circ}C$. Non-isothermal rolling simulations and laboratory rolling tests were performed with plate specimens 14.5mm thick, 135mm wide and 226mm long. A rolling reduction of 15% per pass leading to a cumulative rolling reduction of 60% was determined as optimal. The extension ratio of 176.5% in the length direction was about 30.4 times greater than the extension ratio of 5.8% in the width direction. Isotropic properties for tensile strength, microstructure and grain size were measured after mock-up hot rolling tests. The results from the mockup tests were found to be in good agreement with those of the simulations.

Influence of Design Parameters of Grout Injection in Rock Mass using Numerical Analysis (암반 그라우팅 주입 설계변수가 주입성능에 미치는 영향의 수치해석적 평가)

  • Lee, Jong Won;Kim, Hyung Mok;Yazdani, Mahmoud;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.27 no.5
    • /
    • pp.324-332
    • /
    • 2017
  • In this paper, a numerical analysis of one-dimensional viscous fluid flow in a rock joint using UDEC code is performed to evaluate the effect of design parameters on injection performance. We consider injection pressure, fluid compressibility, time dependence of yield strength and viscosity of injected grout fluid, and mechanical deformation of joint as the design parameters, and penetration length and flow rate of injection are investigated as the injection performance. Numerical estimations of penetration length and flow rate were compared to analytical solution and were well comparable with each other. We showed that cumulative injection volume can be over-estimated by 1.2 times than the case that the time-dependent viscosity evolution is not considered. We also carried out a coupled fluid flow and mechanical deformation analysis and demonstrated that injection-induced joint opening may result in the increment of cumulative volume by 4.4 times of that from the flow only analysis in which joint aperture is kept constant.