H(Lean) & ATEQOf JH
QTE Al A ‘gH| HIHS TIARIE

TE X0
TalE

How to Implement ‘Lean’ Principles into Software Development
Practice?: Visualization of Delays and Defects

& & & (Soonsam Hwang) Fthdta 7 gstat, wAilA =
Z M2 (Sung K. Kim) 4tz A48
2 ¢
AZEJ o] 4] o}2 T BEd e FA) AWPJL ATk ABA BE, Az 2E 20 AT
Ao AR AZE Mol & A 22g. Azl A dFE 2ZE] Lo
Agste A @ PAY 5 Ao iiEﬂM’s@} THAA ol A AL AT £ T AR

AFHAG THY o] 5 HHE AA FA HEF F g 7t tF FAA FAE AN 7=

(

l

22 QT ATE W AR E SIS A A$HE WA ANNLA T o) Y2

948 Gl AR

L84

do ¥4 e TAse] Hote] L2AEANY Y= B 2FE TH 25

% (Cumulative Flow Diagram)& %3 #2]3t= Wolth T3 o] WS A4 Z2AE Agd 731%@

SEN BRAES AF AE Py g

ol & FLA AT

FINE : ¥ LZEF, YRY, 2TY, 74 TEE 2ZEH HY

[. Introduction

Despite its half-century history, software industry
still has many deep-seated problems. It lacks qual-
ity and manageability. Why is the industry still im-
mature? Wouldn’t there be something to learn from
other mature industry? It was quite natural to look
for best practices in manufacturing domain.

It is the concept of ‘lean’ that has attracted the

most attention. The lean software development was
first introduced in 2003, which is defined as trans-
lation of ‘lean manufacturing’ principles to the soft-
ware development domain. In their book Poppen-
dieck and Poppendieck (2003) indicated that these
principles are applicable to software community as
well.

There have been some researches for adopting
lean principles into software practices. Sowmyan
(1998) tried to verify the feasibility of lean software
development. He insisted that software reusability is

core in implementing the lean software as it helps

to] #EL20118E YU gt&d7n Y
9% AY
2011. 4.

61

gaa-dyE

to achieve improved quality and reduced time and
cost. Poppendieck (2002) argued that underlying
principles of lean provide a good framework for im-
proving software development. However, these stu-
dies did not show specifically how to implement
the lean principles into software development.

Another approach was proposed, which combines
lean principles with a software development process.
The process selected was agile which is a method-
ology based on iterative and incremental develop-
ment. Poppendieck and Poppendieck (2003) indica-
ted that lean has a series of good thinking, but it is
hard to be applied into software development di-
rectly becanse lean lacks practical tools or techniques,
Beyond their explanation that lean and agile are
supplementary each other and, when used together,
would produce good results, there was an attempt
to prove the feasibility of connecting agile and lean
through pilot project (Parnell-Klabo, 2006). Pamell-
Klabo (2006) showed the rationale of applying lean
principles in conjunction with agile. It led to 40%
reduction in project duration and 10% drop in costs
compared to waterfall baseline estimates while re-
sulting in impressive increases in product quality.
Though Parneli-Klabo's pilot effort is valuable in
some aspects, it still has limitations. It could not
obviously show in specific how agile exactly wor-
ked to realize lean software.

In this paper, we attempt to present a method of
implementing lean principles into software develop-
ment practice. Our approach mainly deals with the
elimination of waste in software development. Key
decisions were what to manage in order to reduce
wastes and how to assist the managing of soft-
ware development process. To this end we analy-
zed the main sources of wastes in software devel-
opment and looked for a visualization tool by which
the software development is better managed. In our

approach project lead time and software defects are
regarded as major targets of management and are
visualized using Cumulative Flow Diagram. Further,
we applied this method with actual project. The re-
sult reported here confirms that agile is positively
effective on reducing defects.

From the following section, this paper will ex-
plore what the lean and lean software are about and
the likelihood of connecting agile and lean as dis-
cussing their complementary relationship. It will then
analyze the case study to show how effectively
agile plays its role in implementing lean thinking
and finally conclude with brief summary, limitations
and future researches.

II. Research Background
2.1 Lean and lean software

In this section, more detailed background of lean
emergence and its core values are going to be dis-
cussed in order to see how important lean is in de-
veloping software in terms of waste elimination.
Toyota Production System which is currently called
as lean was introduced after the late 1940’s in Japan.
At that time, Japan was struggling with economic
downturn as lost in the World War II. So, people
could not afford to pay high costs for cars and
even the market was not big enough to allow mass
production which is appropriated for cutting costs
down. Facing with the situation, Toyota had to find
a way to make cars in small quantities, but keep
them as cheap as mass-produced cars. To cope with
those challenges, the Toyota Production System (TPS)
was emerged as a solution and its core idea was to
maximize quality, at the same time minimize costs
and lead-time by eliminating wastes (Kim and Park,
2007). The introduction of TPS concept was suc-

62

Information Systems Review, Vol.13, No.1

2l(Lean) 7HdS 2ZEL 0] JHY WHo| HE3|7| Hst Al A7

cessful and its success made many researchers pay
attention to it. One of them, MIT research group
presented its importance with newly coined term
lean to the world (Kim and Park, 2007).

“Lean is a mindset, a way of thinking about how
to deliver value to the customer more quickly by
finding and eliminating waste” (Hibbs et al., 2009).
Wastes are anything that does not contribute to the
customer value but impede to quality and producti-
vity (Petersen and Wohlin, 2010). There are 7 major
wastes; over-production, inventory, motion, delay,
transportation, over-processing, and defects (Shigeo
and Dillon, 1989). To remove these wastes, lean
conducts a key activity known as ‘Value Stream Map’
which breaks down whole process into a map of its
individual steps and configure which steps are val-
ue-added and which are not. It then focuses on get-
ting rid of wastes found whereas improving value-
added steps (Hibbs er al., 2009). After all, what only
remained after applying lean were steps, time and
people that add value from the eyes of customers
(Poppendieck, 2002).

Lean thinking has proven its value and been ap-
plied beyond the manufacturing environment (Parell-
Klabo, 2006). As mentioned above, Mary and Tom
Poppendieck were firstly aware of the probability
of lean software development (Middletion, 2001).
Lean software development is not a development
methodology per se, but it offers 7 principles that
are applicable in any environment to improve soft-
ware development. The 7 principles are eliminate
waste, amplify learning, decide as late as possible,
empower the team, build integrity in, see the whole.
The Poppendiecks foresaw that software industry
would gain same results of what lean benefited in
production as it helped productivity more than dou-
ble compared to industry norms while errors and
anomalies dropped simultaneously.

Sowmyan (1998) suggested that lean thinking is

applicable to software development process. Hamiltion
(1999) also stated, application of lean to software
development reduces cycle time and improve over-
all quality. Morgan (1998) added that clearly imple-
mented lean software causes dramatic improvements.
But, the problem was lean principles in production
could not be always applicable to software. Due to
this fact, Poppendieck refined lean principles used in
manufacturing and declared re-defined 4 basic prin-
ciples which are most relevant to software develop-
ment; eliminate waste, respect people, defer commi-
tment and optimize the whole (Poppendieck, 2002).
Among the lean principles, Tiemey (1993) con-
tended ‘waste elimination’ is the heart of lean in
software development. Wirth (1995) said, today’s
software is getting ‘fat’ so in the end results in
‘complexity.” ‘Complexity’ is cholesterol which tac-
itly killing ‘growth’ and ‘profit’ in software devel-
opment (Poppendieck and Poppendieck, 2007). It
means the process of software development in-
volves lots of unnecessary or non-value added ac-
tivities and those wastes should be removed so as
to avoid complexity. Wastes in software develop-
ment include extra features, requirements, extra steps,
finding information, defects, waiting, and handoffs
(Poppendieck, 2002). Especially, in software, defects
are one of the most harmful wastes in terms of
product quality, costs, and speed. This is because
undiscovered and not corrected defects will ruin
project quality (Tierney, 1993). In addition, it will
become far more expensive to fix defects as a proj-
ect moves on (Middleton, 2001). As a result, waste
elimination, particularly getting rid of defects is an
important factor maximizing the value of the prod-
uct finally delivered- the ultimate goal of lean.

2.2 Lean Software and Agile

So far, it has been discussed what the lean and

2011. 4.

63

k13

=4

9

AUy

M

its core values are about, as well as the justification
of applying lean to developing software. From this
part, agile is going to be introduced in order to dis-
cuss the relationship with lean and then expected
benefits that the application of connected agile and
lean brings up to software development will be ex-
plored through existing research review. It will then
address the ultimate meaning of this paper by point-
ing out limitations of existing studies.

Agile is a newly emerged approach on organiz-
ing software development. Agile methodology was
disclosed to public by Agile Manifesto in 2001. The
term ‘agile’ encapsulates diverse development me-
thodologies that have the characteristics of so-called
‘light weight methodology.” It is based on the con-
cept ‘Agility.” Agility applied to software develop-
ment has the objective to embrace ‘changes’ thro-
ugh rapid and flexible response to them (Larman,
2004). “Agile development methods apply time-boxed
iterative and evolutionary development, adaptive
planning, promote evolutionary delivery, and include
other values and practices” (Larman, 2004). This agile
approach based on iterative and incremental impro-
vements on developing software enhances value of
products and ultimately user’s satisfaction. Recogni-
zing the usefulness of agile, there have been con-
tinuous efforts to investigate agile in relation with
lean and their synergetic effects.

“The Art of Lean Software Development” (Hibbs et
al., 2009) explained the relationship between lean
and agile by discussing common and different fea-
tures they share. Above all, lean and agile have
same goals; maximizing productivity of software
development while optimizing the quality perceived
by customers. Both not only positively think the
changes in requirements involved over the whole
course of the project, but put the highest value on
satisfying the customer’s real needs with delivered

software. Each takes different view; agile has a
narrower focus while lean prefers to take holistic
view on software so that lean views agile as sup-
porting practices of lean software development.
Another prime difference is that lean more con-
cemns about waste elimination while agile focuses
on how collaboratively to work with customers and
how rapidly to deliver software to them.

Focusing attention on their close relationship, ef-
forts to explain the likelihood and appropriateness
of agile-lean software development have continued.
‘Lean Software Development; An Agile Toolkit’
(Poppendieck and Poppendieck, 2003) suggested
plenty of agile tools and practices required to de-
velop lean software. It said lean has series of good
thinking, but it is hardly applied to software devel-
opment in direct ways since lean is lack of prac-
tical tools or techniques. Agile, however, has more
specific tools or practices so that can help for im-
plementing lean idea into software development.
Beyond the explapation of their supplementary re-
lationship and expected merits, there was an at-
tempt to prove the feasibility of connecting agile
and lean and synergetic work of them through pilot
project (Parnell-Klabo, 2006). To empirically verify
it, a pilot project targeted acquisition division at a
large financial service company was performed. It
firstly carried lean activity eliminating wastes out
environment was better optimized with the 50% re-
duction in tasks. It then adopted agile technique,
Scrum, to see how agile could be more effective in
the lean applied environment. The result showed
duration of software development and testing was
decreased by 40% and resource costs were also
dropped by 15%.

Even though the expectation of agile-lean soft-
ware development is getting higher, only few re-
searches have studied the field of connecting agile

64

Information Systems Review, Vol.13, No.1

2l(Lean) EE AZESO 7Hgt

Lol HI317| flet Al AT

and lean for the purpose of software development.
Furthermore, empirical evidences or case studies
backing it up are insufficient. In this situation, The
Parnell-Klabo’s experimental pilot is a valuable, but
has issues. As discussed already, it did not present
detailed Scrum role in achieving such outcomes.
Moreover, the improvements in cost, duration, and
quality are not aligned with the core value that lean
pursues. In software development, what lean puts
importance on is ‘waste elimination.” However, those
outcomes accomplished by the pilot attempt are the
common goal discussed for a while from the past,
not from the lens of lean. So, it is hard to under-
stand the pilot success in the way of reflecting the
lean idea.

This paper aims to show the effects of agile, es-
pecially Scrum on software development from the
eyes of lean. Scrum manages a project with brief
daily progress updates and iterative sprints develop-
ment cycle. The reasons why Scrum has been chos-
en and used are followings. Scrum is the most ap-

plicable to any business environment with high var-

iability and complexity (Pamnell-Klabo, 2006). “Scrum
is also simple-its process, practices, artifacts and
rules are few, straightforward, and easy to learn”
(Schwaber, 2003). These two features, ‘simplicity’
and ‘high applicability’ are main features enabling
Scrum to be a strong tool in agile and this is be-
cause Scrum was chosen.

How we could identify the Scrum effect in the
way of realizing lean core idea? It can be figured
out through the Scrum influences on eliminating
WIP (Work in Process) and Lead time. WIP is
number of works to do and lead time is the time
which is likely to take to finish works in process
(Griffiths, 2007) Therefore in order to make a lean
process in software development, one approach
could be to break down work in smaller chucks to
get things faster through the development process.
Also lead time is regarded as wastes in lean pro-
duction because long lead time creates high level of
variation, increases costs, and hinders quality im-
provements (George, 2002). The number of works

in process is caused to long lead time. These WIP

units 600
500 & Total

In Progress

B Completed
400
300
200
100

0 . »
1 2 3 4 5 6 times
(Figure 1) Cumulative Flow Diagram
2011. 4. 65

g

S4-dyE

Hr

and Lead time are clearly visualized in CFD {Cumu-
lative Flow Diagram). In the following CFD dia-
gram, the yellow area contains all the work which
started but not yet finished, that is ‘Queue.” The
vertical Y indicates WIP while horizontal X in-
dicates Lead-time (Griffiths, 2007). Visibly display-
ing how WIP and Lead-time changes during a proj-
ect life cycle, CFD enables a project team to easily
recognize any stagnant bottlenecks and perform bet-
ter for overall process improvement. Therefore, CFD
can be used as an excellent tool for waste elimi-
nation. This is because this paper selects CFD as a
visual aid of Scrum effects.

. Research Methodology

With the need of finding a way of experimenting
lean thinking applied to software development, two
main options were identified. One was designing ex-
perimental project with controlled environment. It
would be more aligned with the classic research
model, but it is fairly hard to be arranged. It also
could not duplicate full details of real projects. The
other one was to choose real projects then observe
them by gathering data and analyzing. However,
some difficulties lie in the choice of a suitable sub-
ject and objective data gathering. It was not possi-
ble to apply the classical model on a project of any
meaningful size or duration for this research. The
choice of here was to use real case project. There
were some requirements to apply this case study.
The first one was that agile needed to be introdu-
ced at enterprise level so that plenty of agile proj-
ects exist. In addition, whole process of the projects
must adhere to agile process. The second one was
that objective data for defects and lead time must
be collected and analyzed with an automatic tool.

Based upon the analysis of the real case study,

we aim to show agile could be a good start of de-
veloping software in the lean perspective. Software
development from the eyes of lean implies that
software is built in the manner of mirroring key
lean principle-waste elimination, waste would be de-
fect in software. In the following case study, it is
seen that agile, in particular Scrum is much more
suitable than Waterfall for defect reduction. While
Waterfall makes errors to be accumulated during
the project life time since it follows traditional
step-by-step project development procedure, agile
reduces errors by frequently detecting them through
iterative and incremental process of project devel-
opment. This agile effect is shown through gradual
decreases of WIP and Lead time with agile tool,
Scrum. But, this paper is not going to emphasize
the absolute necessity of using Scrum for obtaining
the effects of lean, but to discuss that agile tool,
Scrum could be effectively used for lean software
development. For better understanding, two differ-
ent projects, one was developed with Scrum and
another was done with waterfall are introduced and
analyzed in comparison.

3.1 Case Study

We selected a global internet portal company
which has adopted Scrum as a standardized method
of managing projects and actively applied it to the
number of projects in many years. To manage those
Scrum projects, the company developed Scrum pro-
ject management systern based on Bugzilla-bug trac-
king software of Mozilla. It automatically produces
a visual figure called ‘burn down chart’ describing
work status going on work process. “The burn-
down chart is a graphical display that is used in a
number of agile tracking tools to visually depict the

remaining work required for a milestone to be ach-

66

Information Systems Review, Vol.13, No.1

2l(Lean) 7HdE L2ZEsfo] 7hY Yol K317 ffet Alef o7

ieved” (Cooke, 2010). In the side of managing a
project, it is helpful to keep a team on track. How-
ever, in the aspect of lean, it is no longer effective
since the way burn down chart works is not aligned
with the goal of lean. It means that burn down chart
only focusing on the current state of sprint or iter-
ation makes hard to see all the works proceeded
from the beginning at a glance. So, it makes diffi-
cult to identify delays or defects causing ‘waste’ in
the process and control them. Consequently, to ach-
ieve the goal of lean ‘waste elimination,” an alterna-
tive tool visualizing holistic picture of the process
is needed. CFD (Cumulative Flow Diagram) is an
appropriate tool to supplement the weaknesses of
burn-down chart. It enables to see work progress and
the time required to finish as work items accumu-
lated from the beginning of a project. In this rese-
arch, we use a CFD tool developed by the company
for the purpose of managing WIP and Lead time.

In order to see the Scrum effect, two real proj-
ects are chosen. The project named Global finance
was completed under Waterfall approach whereas
another project ‘Global sports world cup’ was com-
pleted with Scrum. We have carefully considered
project intrinsic variables and chosen these 2 pro-
jects to meet an intention for this paper. First, de-
velopers in both projects used same programming
language under same development environment. Se-
cond, the size and development period of the proj-
ects, projects complexities were similar. Third, each
project team thoroughly conformed to their devel-
opment methodologies; agile and Waterfall respec-
tively. Both project teams use a bug tracking sys-
tem, Bugzilla, which provides status data for re-
ported defects. So we can analyze WIP and lead
time of the two projects with CFD tool by collect-
ing data from Bugzilla.

3.1.1 Case 1 (Waterfall Approach):
Global Finance Site Develop-
ment Project

The objective of this project was to deliver a first

“Site-In-A-Box” that can be used to replace exist-
ing finance sites over the world. A project team was
divided into three sub teams which were respon-
sible for ‘Site development,” ‘DB migration,” and
‘Common infrastructure development’ respectively.
There were 15 team members. It followed the tradi-
tional project development cycle, “Water fall.” The
following CFD diagram is proportional of the whole
project life time, 2 months test and release period.
There were 2 times code freeze in total; first was
22 February 2010 when testing phase was initiated
and second was 06 April, 2010. The following
CFD is telling that there were sharp increases of
WIP right after the first code freeze. The increased
WIP then negatively affected to Lead- time. This
phenomenon in which WIP and Lead time became
larger made it difficult to stabilize the project for
launch. In the end, as the <Figure 4> is showing,
it took much time in order to resolve matters; aver-
age lead time used for both defect detection and
correction was 28 days. As can be seen from the
<Figure 2>, the number of defects sharply in-
creased so that resulted in bottlenecks. Under wa-
terfall way, most of defects occurred in design and
development phases are usually detected in test pha-
se. So, as can be seen from the <Figure 2>, the
number of defects sharply increased in testing pha-
se. In effect, during the process of fixing defects, it
was found that it took longer time to handle defects
which are simple but old.

3.1.2 Case 2 (Agile Approach):
Global World Cup Project
The goal of this project was to open the site of

2011. 4.

67

geadya

F1, P2 priority - Global Finance (5IAB-1.8} {Defect tickets)

Cumulative Flow hy Status for 2010-02-20 through 2010-04-20

‘Lead time

4 1400

o

1200

orL

1000

42484
2004 e Kia i

QTOZ-HZ~P0
QWE-ET~Po
0T0Z-8T-b0
0TOZ-£T-b0
UTOZ-BT-b0
QINZ-CT~bO
0T0Z-¥T-p0
0T02-€1-+0
0T02~ZT-p0
QTOZ-TT-b0
0T0Z-0T-b0
0T0Z-50-b0
VEQE-BO-BO
0T0Z-£0-b0

{ 010Z-90-b0

0T0Z-GO~bG
ATOE-Pi- 50
0TOZ-€0~40
0TOZ-20-90

1 0102~10-pG

0T0Z-1E~E0
0T0Z-0E-€C

{ 0T02-62-£0

0TOZ~8E-E£0
0TOZ-L2-E0
0T0Z~92-€0
0T0Z-G2-€¢
0TOZ-P2E0
0T0Z-£2-€0
0702-22-€5
0T0Z-T2-£0
0T0Z~02~E0
0T0Z-67-€0
0T02-8T~-€0
0T0Z-£1-€0
0TOZ~9T-ES
0T0Z-GT-€¢
0T0Z-vT-€0
0102-€1-£¢
0T0Z~ZT-EG
0T0Z-TT-£0
0T0Z2-0T-€¢
OLOZ~60~E0
0T0Z-80~£0
0T02-£0-£0
0T0Z-90-€¢
OTOZ~GO~E0
0T0Z-Ho~E0
0T0Z-£0-E0
0T0Z-20-E0
0T0Z-T0-£0
0T0Z-82-20
0T0Z-£2-20

{ 0T0Z-92-Z0
{ oroz-cz-20

0T0Z-b2-20
0T02-£2-20

{ ot0z-z2-20

OTHZ-~TE~20
0T02-02-2¢

[wIP Tickets |

[£1 verified and/or Closed Tickets

(Figure 2> Cumulative Flow Diagram of Global Finance Project

P1, P2 priority - Global Finance (5IAB-1.8) (Defect tickets)

fiverage Lead Time from New by Status for 2010-02-2¢ through 2010-04-20

3535

3282828282828284

i

9 %8 39889

2828282828

25

0
28

80

i3 OTOZ~0L-$0

0T62-6T~10
0T0Z-67-30
OTOZ-4T-40
OTOZ-GT~HG
0T0Z-81-90

2 OT0Z-FT-50

0T0Z-CT-b
OTOZ~ZT~40

A 0T0Z-1T-50

0T0Z-0T-p0

i 0TOZ~60~b0

0T0Z-80-b0
0T0Z~20-b0
0TOZ-50-30

A 0T0Z-G0-p0

OTOZ-po-py
0T0Z-E0-H0
OTOZ-20~40
GTOZ-T0-50
OTOZ~1E~E0
OT6Z-0E-E0

] OT6Z-62-20

DIOZ-GZ-E0
0T0Z-£2-E0
0T0Z~9Z2~E0
0T0Z-G2-£9
OYOZ-pZ-E0
0T6Z-£2-£0
0T0Z~22-£0
0102-12-€0
OTOZ~0E-£0
0102-61-80
0T02-81-£0

4 0T0Z-{T-£0

0T02-91-£0

0T02-81-£0

0T0Z-+3-€0
OTOZ-£T-E0
0T02~Z1-E0
0T62-17-£0

4 0102-0T-£0

0T0Z~60-£0

} OTOZ~80-E0
] 0T02-20-£0

0T0Z-90-20
0102-G0~£0
OTGZ~p0~£0

4 0T02-£0-20

0T6Z-20-£0

4 PI0Z-T0-E0

0T62-8Z~20

q 0T02-22-20
0TeZ-92-20
] 0T0Z-G2~20

0T02-pZ-20
0T0Z-£2-20
0T0Z-22-20

] o102-12-20
J 0102-02-20

1 Resolved Tickets TodagJ

verified/Closed Tickets Today

-&- Resolved Tickets to Date

(Figure 3) Average Lead Time Flow Diagram of Global Finance Project

{4- Verified/Closed Tickets to Date

As opposed to the above project, it was developed

FIFA World Cup held in June 2010 at every sports

under Scrum and each Sprint was released by every
2 weeks. As the <Figure 4> describes, this project

sites at the company. One team composed of total

12 project members was involved in this project.

Information Systems Review, Vol.13, No.1

68

P1, P2 priority - Sports - Global (Defect tickets)
Cumulative Flow by Status for 2010-05-01 through 2016-06-30

1800
1500
40

—
Iunoy ATl

7 OTHE-0E-20

GE-BZ-00
E- QR0
OTOZ-LZ-50
0Z-9Z2-%0
OToHZ-G2-50
OTGI-P2-00
OROZ-EZ-90

] otoz-zZ-90
A DTOZ-T2-50

Sizayii=iy]

{ oToz-67-90
| n1o2-a7-30
{ oToz-27-50
4 0TOZ-97-90
4 0T0Z-GT-90

OTOZ-HT-90
OTOE-ET-30
UTLE-ZT-90
OTO2-TT-30
OTHZ-OT-30
QTOZ-BO~F0
ATOZ-20-90
OTOZT-L0-30
GTOZ-90-30
GTOZ-Go-30
OTOZ-F-30
OTOZ-E0-50
QTUZ-20-90
OTOZ-To-G0
QTOZ-TE-G0

{ 0T0Z-0E-GO

QTOZ-6Z-50
OTOZ-HZ-50
OTOZ-£E-50
0TOZ-92-GO

{ 0T0Z-52-G0
{ 0Toz-2-G0

OTOZ-E2-G0

A OTOE-ZZ-50

GTOZ-TZ-50
OTOZ-0Z-50
OTOZ-BT-G0
OTOZ-RT-G
OTOZ- LTG0

A OTOZ-5T~50
{ OTOZ-GT-50

OTOZ-FT-5E0
OTOZ-CT-G0
GENZ-ZT-50
OZ-TT-G0
OTOZ-0T-50
OTOZ-G0-50
QTOZ-80-G0
OTOZ-L0-G0

{ OTOZ-D0-50

OTOZ-G0-5G

] WIF Ticke

Ll:l Werified anddor Closed Tickets

(Figure 4) Cumulative Flow Diagram of Global World Cup Project

P1, P2 priority - Sports - Global {(Defect tickets)

0

4.0-06-3

Z

ol0-05-01 through

Zt

zad Time from Mew by Status for

Hverage L

11111311114111

21z

21212121

12121

101010 1otddta

sl 1414

Foren

9.
1.%1615

61616

S

=3 '] o
) =+ =

sheq adedsay

o OTOZ-TT~-D

H OTOE-0E-530
HTOZ-6Z-30
OTEE-RT-50
UTOZ-£2-50
OTOZ-G2~30

OTZ-b7-90
OTOZ-EZ-90
GTOZ-2Z-30
0T0Z-T2-30
HTOZ-02-90
OTHZ-6T-90
DTOZ-ET-90
HENE-LT-360

4 0T0Z-9T-3¢

OTLZ-ET-30

| CTOZ-PT-90

GTOZ-ET-90
OTOZ-27-00

DFOZ-0T-50
QTOZ-B0-50

g} 0T0Z-20-30

OTZ-£0-80
OTLE-90-50)
OTHE-Gl- S0
OTOHZ-PO-50
OTOZ-E0-30
ATOZ-Z0-30
OTOZ-TH-80
OTHZ-TE~EO

4 0T02-0E-50

0TOZ-6Z-50
OTOZ-BZ-50
QTOZ-£2-80
GIOZ-52-50
OI0Z-52-G0

TOZ-PZ-G0
OTOZ-22-G0
GTHZ-22-50
OTHE-TE-5¢
OTHZ-0Z-56
OTOZ-6T-G0
QOT0Z-€T-50
OT02-LT-50
HINZ-9T-50
OTOZ~CT-50
OTOZ-PT-G0
CTOZ-ET-G0
OT0OZ-ZT-50
OTZ-TT~G0
OTOZ-0T-GO
OTGE-BO-Gi
OTOZ-20-50

4 OTOZ-L0-50
f 0TOZ-90-60

OFOZ-50-50
UTOZ- OG0
OTOZ-E0-G0
GE0Z-Z20-80
OTOZ-TO-G0

A Resolved Tickets Today l

ca

Yerified/Clozed Tickets To

&)

& Pesolved Tickets fo Date

[+ verifiedsClosed Tickets ta Date

(Figure 5) Average Lead Time Flow Diagram of Global World Cup Project

<Figure 5> shows that repeatedly released Sprints

developed with Scrum had always kept WIP at a

were effective for lead time reduction as early de-

consistent level and WIP was further improved de-

tecting and fixing any defects happened. As you

pending upon the team competency. In addition, the

69

2011, 4.

g

H>

I

can see, the lead time took around 12 days. It is
fairly a lot shorter than the global finance project
which took 28 days. A more noticeable point in the
figure is the fact the average 12 days lead time had
being decreased up to 10 days as the project moved
more and more.

Through the real case of Global Sports World
Cup project, it becomes evident that the project
adopted Scrum was done in an effective manner on
dropping WIP and Lead-time. How was that possi-
ble? In the Scrum framework, the project used to
get monitored every 2 weeks in order to see what
happened during the previous 2 weeks. By doing so,
WIP (number of defects issued) was not much piled
up, but resolved as soon as they occurred. Thus,
Lead-time (time to spend on fixing defects) was
steadily decreased. On the other hand, in the Water-
fall based Global Finance Project, huge amounts of
errors were detected and even stacked up since the
team was not good enough to immediately correct
them with limited team capability. So, increased
WIP caused increases of Lead-time, eventually esca-
lation of costs as it is more costly to resolve de-
fects as time goes by. As a result, by observing and
comparing the different results of the above pro-
jects, it is getting clear that Scrum adoption worked
well in the way of implementing the core lean idea,
waste elimination.

The core idea of developing lean software is to
get rid of wastes occurred during the project pro-
cess. Specially, defects cause costly reworks that
directly lead to non-value added activities so are
considered as the biggest waste factor (hibbs et al.,
2009). Therefore, it is very important to early de-
tect and remove defects as soon as possible. Agile
development was very helpful in early detection
and fixation of defects since it is designed with
short and iterative development process. The Global

Sports World Cup project shows that defects accu-
mulated throughout the project progress have been
uniformly maintained. Moreover, the time required
to remove defects has been gradually lessened. It
would have positive learning effects to developers
as detected defects are immediately reported to
them.

IV. Conclusion
4.1 Brief Summary

The objective of this paper was to visibly prove
the effects of Scrum on implementing core lean
idea, ‘waste elimination’ in the whole course of
software development. Through an empirical attempt
carried out at a global internal portal company, it
has figured out the fact that Scrum positively plays
its role on reducing wastes by cutting WIP and
Lead time down. As you can see from the case
study, there was two-and-half times’ differences be-
tween the highest level of WIP at each project; the
maximum number of WIP in the Waterfall-oriented
project was about 500 whereas WIP in the Scrum-
adopted project was around 200. Additionally, the
Lead-time came down more than 50% compared to
the one in the project developed under Waterfall
way. The decreases of WIP and Lead-time imply
wastes in the project were lessened, after all the
core lean idea was realized. That is, it shows agile
could be a good tool for realizing lean software de-
velopment which only contains theoretical principles.

This paper is worth in the following aspects. First
of all, it has empirically approached to the topic of
agile-lean software development which was mostly
discussed in theoretical ways. In addition, this pa-
per has value due to the fact that it presented the
possibility that agile practices and tools can be lev-

70

Information Systems Review, Vol.13, No.1

2l(Lean) 7id2 2= Eo] JHE Wiol| MESE7| HEt AR A7

ers on implementation of core lean principle via
Scrum adoption. Also, the reduction of WIP and
Lead-time in the research seems to positively im-
pact on project cost, quality and productivity im-
provements. It is well matched with the proven goal
of agile through lots of research or studies; project
period reduction, quality improvements, and cost
cutting. All the obtained findings in the research
methodology and the way of performing the research
seem to be a good guideline for future studies as
they can be shared by others.

The well-conducted Scrum application, however,
does not directly lead to the success of lean soft-
ware development. A variety challenges such as
smooth transformation of business environment ex-
ist for success and settlement of lean software de-
velopment (Middletion, 2001). Lean principles have
to be understood well by all members of a project,

before implementing in a concrete, real-life situation.

4.2 Limitations and Future Research

This paper also faces challenges. At first, the case
study showed mainly quantified outcomes with the
use of CFD. But, the case study would have more
useful if the process of utilizing agile tool for lean
software development is more clearly demonstrated
through team interview or close monitoring. Addi-
tionally, the case study itself may lack objective-
ness for selecting projects in terms of control vari-
ables. In the research, we have considered project
related variables (project development environment,
size, duration, and project complexity) when select-
ing two projects for this case study although there
were some differences between two projects in terms
of project size and project complexity. Despite the
fact that these intrinsic variables were not handled

well, there would not be a significant issue, beca-

use the purpose of this case research lies not in sci-
entific verification. Besides, few other case studies
exist since companies rarely use agile at an enter-
prise level and manage lead time in quantitative ways.

From lean perspective, this paper has proposed
agile is effective in eliminating the biggest waste
factor, defects and lead time in developing software.
But, it could not explain the validity of using agile
in terms of actualization of other lean principles,
but focused only on the first principle. In future study,
we will endeavor to explore the role of agile in achi-
eving rest of lean principles for software develop-

ment.

References

Cooke, J., Agile Principles Unleashed: Proven ap-
proaches for achieving real productivity gains
in any organization, IT Governance Publish-
ing, the United Kingdom, 2010.

Dictionary.com, “Agility”, Dictionary.com, LLC,
2011, online at http://dictionary.reference.com/
browse/agility.

Fowler, M., “The New Methodology”, MARTINE
FOWLER, 2005, online at http://www.martinfo
wler.comyarticles/newMethodology.html.

George, M., Lean Six Sigma, McGraw-Hill, New
York, 2002.

Griffiths, M., “Creating and Interpreting Cumulative
Flow Diagrams”, 2007, online at http://www.
leadinganswers.com

Hamilton, T., A lean software engineering system
for the Department of Defense, Massachusetts
Institute of Technology, 1999.

Hibbs, C., S. Jewett, and M. Sullivan, The Art of
Lean Software Development: A Practical and
Incremental Approach, O’Reilly Media, Inc.,
USA, 2009.

2011. 4,

1

geayuya

H>

Kim, E. H. and J. H. Park, “Analysis of Lean Six
Sigma Methodology for Postal Logistics”, ETRI,
2007.

Larman, C., Agile and iterative development: a ma-
nager’s guide, Pearson Education, Inc., Boston,
2004.

Middleton, P., “Lean Software Development: Two
Case Studies”, Software Quality Journal, pp.
241-252, 2001

Morgan, T., Lean manufacturing techniques applied
to software development, Massachusetts Institute
of Technology, 1998.

Pamell-Klabo, E., “Introducing Lean Principles with
Agile Practices at a Fortune 500 Company”,
IEEE Computer Society, 2006.

Petersen, K. and C. Wohlin, “Software process im-
provement through the Lean Measurement (SPI-
‘LEAN’) method”, The Journal of Systems and
Software, 2010.

Poppendieck, M. and T. Poppendieck, Implementing
Lean Software Development: From Concept To
Cash, Addision-Wesley, 2007.

Poppendieck, M. and T. Poppendieck, Lean Software

Development: an agile toolkit, Addison Wesley,
Boston, 2003,

Poppendieck, M., “Principles of lean thinking”,
Technical Report. LLC, 2002.

Schwaber, K., Agile project management with Scrum,
Microsoft press, Redmond, 2003.

Shalloway, A., G. Beaver, and J. Trott, Lean-Agile
Software Development: Achieving Enterprise
Agility, Addison Wesley, 2009.

Shingo, S. and A. Dillon, 4 study of the Toyota
production system from an industrial engineer-
ing viewpoint, Productivity Press, New York,
1989,

Sowmyan, R., “Lean software development: is it fe-
asible?”, Digital Avionics Systems Conference,
Vol.1, 1998.

Tierney, J., “Eradicating mistakes from your software
process through Poke Yoke”, Software Quality
Week, Software Research Institute, pp. 300-307,
1993,

Wirth, N., “A Plea for Lean Software”, IEEE Com-
puter, 1995,

72

Information Systems Review, Vol.13, No.1

2l(Lean) 72 2ZES0] JH Woll HEslo] st At AT

Information Systems Review

Volume 13 Number 1
April 2011

How to Implement ‘Lean’ Principles into Software
Development Practice?: Visualization of Delays and
Defects

Soonsam Hwang - Sung K. Kim"

Abstract

Software industry still has many deep-seated problems. As a natural consequence, it may have to
learn from best practices in more mature industry like manufacturing. An example is ‘lean’ software
development which is defined as translation of ‘lean manufacturing’ principles to the software develop-
ment domain. The principles include ‘eliminate waste’ and ‘amplify learning.” It was much asserted
that these principles are worth applying. Not much study, however, was done on how to practically
implement these principles into software development practice. In this study we attempt to present a
method in which project lead time and software defects are regarded as major targets of management
and are visualized using Cumulative Flow Diagram. We further applied this method on actual projects.
The result confirms that agile is positively effective on reducing wastes.

Keywords: Lean Software, Agile, Scrum, Cumulative Flow Diagram, Software Development

* Dept. of Business, Chung-Ang University

2011. 4. 73

ot
>
0z
i
o
rh

OM A2

& = M (soonsam@empal.com)

TR AR A A}, S FF el FFGARALD LR
A, vhaL 898 #5389t} LG-EDS Systems, Handysoft, Yahoo Korea®] 4]
THEAAT Fo BARorE MPPHE, ZEA 2 A, £2ZEH] T, Z
ZAE #e Folth

A M 2 (sungkun@gmail.com)
=

u]= New York tlgao] s FEA2d AFoz Ay HE & F g 2
UAANE AX FYdistn A4S ZFE OF Folt). AFHIAZRES g
Z 9 Fddgtn A4 RAFE Yo, €4 MRS, §=
FeleodolgAe 2y oA, 33 CIOXEY ENAE 85 Folt. AHE
ok Enterprise Architecture, IT Governance 5 °|th.

=EHTY 120114 048 129 AZHEtEel 20114 048 26
1A 3 120118 048 19¢

74 Information Systems Review, Vol.13, No.1

