• Title/Summary/Keyword: cultured products

Search Result 323, Processing Time 0.03 seconds

Industrial Research and Development on the Production Process and Quality of Cultured Meat Hold Significant Value: A Review

  • Kyu-Min Kang;Dong Bae Lee;Hack-Youn Kim
    • Food Science of Animal Resources
    • /
    • v.44 no.3
    • /
    • pp.499-514
    • /
    • 2024
  • Cultured meat has been gaining popularity as a solution to the increasing problem of food insecurity. Although research on cultured meat started later compared to other alternative meats, the industry is growing rapidly every year, with developed products evaluated as being most similar to conventional meat. Studies on cultured meat production techniques, such as culturing new animal cells and developing medium sera and scaffolds, are being conducted intensively and diversely. However, active in-depth research on the quality characteristics of cultured meat, including studies on the sensory and storage properties that directly influence consumer preferences, is still lacking. Additionally, studies on the combination or ratio of fat cells to muscle cells and on the improvement of microbiota, protein degradation, and fatty acid degradation remain to be conducted. By actively investigating these research topics, we aim to verify the quality and safety of cultured meats, ultimately improving the consumer preference for cultured meat products.

Role of Advanced Glycation End Products in TGF-β1 and Fibronectin Expression in Mesangial Cells Cultured under High Glucose

  • HA Hunjoo;KIM Hwa-Jung;LEE Hi Bahl
    • Biomolecules & Therapeutics
    • /
    • v.13 no.3
    • /
    • pp.190-197
    • /
    • 2005
  • Advanced glycation end products (AGE) have been implicated in the pathogenesis of diabetic complications including nephropathy. However, the role of AGE in the activation of mesangial cells cultured under high glucose has not been elucidated. The effects of aminoguanidine, which prevents formation of AGE and protein cross-linking, on the synthesis of $TGF-{\beta}1$ and fibronectin by rat mesangial cells cultured under high glucose for 2 weeks were examined and compared with the effects of $N^G$-nitro-L-arginine methyl ester (NAME), a selective nitric oxide synthase inhibitor, because aminoguanidine also inhibits the inducible nitric oxide synthase. Culture of mesangial cells in 30 mM (high) glucose for 2 weeks induced 1.5-fold (ELISA) and 1.9-fold (Western blot analysis) increase in AGE in the culture media compared to 5.6 mM (control) glucose. Northern blot analysis revealed 1.5-fold increase in $TGF-{\beta}1$ and 1.7-fold increase in fibronectin mRNA expression in cells cultured under high glucose compared to control glucose. Increases in mRNA expression were followed by increased protein synthesis. Mink lung epithelial cell growth inhibition assay revealed 1.4-fold increase in $TGF-{\beta}1$ protein in high glucose media compared to control. Fibronectin protein also increased 2.1-fold that of control glucose by Western blot analysis. Administration of aminoguanidine suppressed AGE formation in a dose dependent manner and at the same time suppressed $TGF-{\beta}1$ and fibronectin synthesis by mesangial cells cultured in both control and high glucose. In contrast, NAME did not affect high glucose-induced changes. These findings support a role for AGE in high glucose-induced upregulation of $TGF-{\beta}1$ and fibronectin synthesis by mesangial cells.

Chemical and Biological Properties on Sanitary of Cultured Oyster Crassostrea gigas Intended for Raw Consumption or Use in Seafood Products (양식산 굴(Crassostrea gigas)의 생굴 및 가공소재용으로서 화학적 및 생물학적 위생 특성)

  • Park, Sun Young;Lee, Kyung Don;Lee, Jung Suck;Heu, Min Soo;Lee, Tae-Gee;Kim, Jin-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.4
    • /
    • pp.335-342
    • /
    • 2017
  • Oysters Crassostrea gigas are a globally popular shellfish for human consumption. As filter-feeding bivalve mollusks, oysters may harbor many microorganisms and chemicals that could pose potential human health risks. The objective of this study was to investigate the suitability of cultured oysters for raw consumption or use in seafood products by measuring concentrations of harmful microorganisms and chemicals in their flesh. Microbial concentrations in cultured oysters were found to be: $1.0{\times}10^2-6.0{\times}10^4CFU/g$ (viable cell counts), not detected $(ND)-5.4{\times}10^3CFU/g$ (coliform bacteria), $ND-1.3{\times}10^2CFU/g$ (E. coli), and $ND-4.6{\times}10^3CFU/g$ (Vibrio parahaemolyticus). Other pathogenic bacteria, including Enterohemorrhagic E. coli (EHEC), Listeria monocytogenes, Staphylococcus aureus, and Salmonella spp., were not detected in any samples. Heavy metal concentrations of cultured oysters were ND-0.239 mg/kg (total mercury), ND-1.091 mg/kg (lead), ND-0.968 mg/kg (cadmium). The concentrations of benzo(a)pyrene ranged from $0.280-0.880{\mu}g/kg$. Paralytic shellfish poison ranged from ND-0.58 mg/kg, while diarrhetic shellfish poison was not detected. No radioactivity was detected. These results suggest that oysters intended for raw consumption or use in seafood products should be subjected to chemical and biological controls.

Formation of Chloroform from Algal Cell Cultures by Chlorination (배양조류의 염소소독에 의한 클로로포름 생성특성 연구)

  • Kim, Hak-Chul;Choi, Il-Whan
    • Journal of environmental and Sanitary engineering
    • /
    • v.24 no.2
    • /
    • pp.40-48
    • /
    • 2009
  • Unusual bloom of toxic cyanobacteria in water bodies have drawn attention of environmentalists world over. Major bloom of Anabaena, Microcystis in water storage reservoir, rivers and lake leading to adverse health effects have been reported from Australia, England and many part of the world. These cyanobacterial cells can release intercellular matter like toxin in water and these intercellular matter can increase the concentration of organic matter. Cellysis can occur when algal cells meet the disinfectants like chlorine in water treatment plant and the resultant rising up of DOC(Dissolved Organic Carbon) or TOC(Total Organic Carbon) can increase the formation of disinfection by products. Disinfectants that kill microorganisms react with the organic or inorganic matter in raw water. In general disinfectants oxidize the matter in raw water and the resultant products can be harmful to human. There are always conflict about which is more important, disinfection or minimizing disinfection by products. The best treatment process for raw water is the process of the lowest disinfection by products and also the the lowest microorganism. In this study the cultured cells, Microcytis Aeruginosa(MA), Anabaena Flos-aquae(AF), Anabaena Cylindrica(AC), and the cells obtained in Daechung Dam(DC) whose dominant species was Anabaena Cylindrica were subjected to chlorination. Chlorination oxidizes inorganic and organic compounds and destruct live cells in raw water. Chloroform was analyzed for the cultured cells which were treated with $20mg/\ell$ dose of chlorine. In general chloroform is easily formed when dissolved organic matter react with chlorine. The cultured cells contributes the concentration of dissolved organic carbon and also that of total organic carbon which might be potent precusors of chloroform formed. The correlations of the concentration of chloroform, DOC and TOC were investigate in this study.

Induced monoterpene and lignin production in mechanically stressed and fungal elicited cultured Cupressus lusitanica cells

  • De Alwis, Ransika;Fujita, Koki;Ashitani, Tatsuya;Kuroda, Ken'ichi
    • Plant Biotechnology Reports
    • /
    • v.3 no.1
    • /
    • pp.57-65
    • /
    • 2009
  • Cultured Cupressus lusitanica cells induced by various stresses are thought to produce different complexes of defense chemicals to optimize defense. To compare the induced products of two stimulations, we investigated the emission of monoterpenes, biosynthesis of ${\beta}-thujaplicin$, and accumulation of lignin in mechanically stressed and fungal elicited cultured C. lusitanica cells. Both mechanical stress and fungal elicitor caused emission of qualitatively similar monoterpene blends indicating de novo biosynthesis of these compounds after stimulation, while mechanical stress alone is sufficient to induce fungal elicitor-related monoterpene emission. Sabinene and limonene were the dominant compounds over the time course in both volatile blends. Although the emitted volatile blends were qualitatively similar, the time course and the relative ratios of the constituents of the volatile blends differed with the type of stimulation. While fungal elicited cells produced significant amounts of ${\beta}-thujaplicin$ over the 5-day time course, no ${\beta}-thujaplicin$ was observed in the mechanically stressed cells. The production of ${\beta}-thujaplicin$ was the main dissimilarity of the induced products of these two treatments, suggesting that synthesis of ${\beta}-thujaplicin$ is not a general response to all types of stresses, but is a specific response and serves as a strong toxic compound against already invaded fungus. Significantly higher amounts of lignin accumulations were observed in the fungal elicited and mechanically stressed cells on the 5th day after induction. Based on these results, we suggest the composition of induced products was dependent on the method of stimulation.

Comparison of the Degree of Bacterial Removal by Hand Hygiene Products

  • Hwang, Young Sun
    • Journal of dental hygiene science
    • /
    • v.22 no.1
    • /
    • pp.51-56
    • /
    • 2022
  • Background: The coronavirus disease (COVID-19) pandemic increased awareness regarding the importance of hand hygiene in infection prevention. Although social distancing and vaccination are the strongest ways to prevent infection, personal hand hygiene is the most basic and easiest way to maintain public health. However, in addition to hand washing using running water, sanitizing tissues, and disinfection products are convenient for hand hygiene, especially outdoors. Therefore, it is necessary to improve the appropriateness of individual hand hygiene methods. In this study, we investigated the degree of hand hygiene offered by various hygiene products and hand drying methods for maintaining hand hygiene. Methods: An LED UV light kit was used for fluorescent observation of hand contamination. Bacteria from the hands were cultured to compare the degree of hand hygiene offered by various hygiene products. Bacteria were cultured in a hand-shaped medium dish to identify areas vulnerable to hand hygiene. Moreover, the degree of hand hygiene was observed according to the drying method using bacterial cultures. Results: We confirmed that hand washing under running water with antibacterial soap, sanitizing with alcohol gel disinfectant, and wiping with antibacterial wet wipes was effective for hand hygiene compared to washing under running water alone. However, for all hygiene products, a large number of bacteria were detected on the fingertips. We verified that natural drying, rather than rubbing, is effective in maintaining hand hygiene. Conclusion: These results suggest that hand hygiene products and drying methods are critical in hand hygiene management. Therefore, these results provide a basis for determining whether an individual's hand hygiene management method is appropriate.

Study on the Activation of Microbial Products by Using the Leachate (침출수를 이용한 미생물 제제의 활성에 관한 연구)

  • 이장훈;정준오;남명흔
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.3
    • /
    • pp.70-76
    • /
    • 1998
  • Activation bacteria, identified from commercial microbial products, were applied to leachate treatment. Total seven strains of bacteria Enterobacteriaceae spp. (5), Bacillus sp. (1), Aeromonas sp. (1) were seeded in the leachate and cultured in the shaking incubator at 25$^{\circ}$C and 250 rpm. While cultured, they were sampled in given time intervals and the removal rates of SS, COD, BOD, T-N.and T-P were measured an indicators of leachate treatment. Through the screening test, four of 7 strains of bacteria were considered to be effective and they were named as "effective group". The capability of leachate treatment was observed on three different groups of bacteria single, effctive, and total mixed. The result showed that the removal rates of COD and SS for the total mixed group were 64 and 71% respectively. BOD removal rate was reached nearly 99% by seeding of effective griup and removal rates of T-P and T-N were 83 and 82% respectively. However seeding of single strain was less effective than that of any mixed group in leachate treatment.

  • PDF

Potential Induction of Quinone Reductase Activity of Natural Products in Cultured Murine Hepa1c1c7 Cells

  • Heo, Yeon-Hoi;Lee, Sang-Kook
    • Natural Product Sciences
    • /
    • v.7 no.2
    • /
    • pp.38-44
    • /
    • 2001
  • NAD(P)H:quinone reductase (QR), known as DT-diaphorase, is a kind of detoxifying phase II metabolic enzyme catalyzing hydroquinone formation by two electron reduction pathway from quinone type compounds, and thus facilitating excretion of quinoids from human body. With the usefulness of QR induction activity assay system for the modulation of toxicants, in the course of searching for cancer chemopreventive agents from natural products, the methanolic extracts of approximately two hundreds of oriental medicines were primarily evaluated using the induction potential of quinone reductase (QR) activity in cultured murine Hepa1c1c7 cells. As a result, several extracts including Hordeum vulgare, Momordica cochinchinensis, Strychnos ignatii, Houttuynia cordata, and Polygala japonica were found to significantly induce QR activity. In addition, the methylene chloride fraction of H. vulgare, one major dietary food source, showed potent induction of QR activity $(CD=6.4{\mu}g/ml)$. Further study for isolation of active principles from these lead extracts is warranted for the discovery of novel cancer chemopreventive agents.

  • PDF

Effects of Natural Bioactive Products on the Growth and Ginsenoside Contents of Panax ginseng Cultured in an Aeroponic System

  • Kim, Geum-Soog;Lee, Seung-Eun;Noh, Hyung-Jun;Kwon, Hyuck;Lee, Sung-Woo;Kim, Seung-Yu;Kim, Yong-Bum
    • Journal of Ginseng Research
    • /
    • v.36 no.4
    • /
    • pp.430-441
    • /
    • 2012
  • This study was conducted to evaluate the effects of natural bioactive products such as Manda enzyme (T1), Yangmyeongwon (T2), effective microorganisms (T3), and Kelpak (T4) on the growth and ginsenoside contents of Panax ginseng cultured in an aeroponic system using a two-layer vertical type of nutrient bath under natural light conditions. The growth of ginseng plants showed specific characteristics according to the positions in which they were cultured due to the difference of light transmittance and temperature in the upper and lower layers during aeroponic culture in a two-layer vertical type of system. The growth of the aerial part of the leaves and stems of ginseng plants cultured in the lower layer (4,000 to 6,000 lx, $23^{\circ}C$ to $26^{\circ}C$) of the nutrient bath was observed to be superior to that of the ginseng plants cultured in the upper layer (12,000 to 15,000 lx, $25^{\circ}C$ to $28^{\circ}C$). The leaf area was significantly larger in the treatment of T2 and T4 (46.70 $cm^2$) than with other treatments. Conversely, the values of the root weight and root diameter were higher in ginseng plants cultured in the upper layer of the nutrient bath. The root weight was significantly heavier in the treatment of T4 (6.46 g) and T3 (6.26 g) than with other treatments. The total ginsenoside content in the leaves and roots was highest in the ginseng plants cultured by the treatment of T1, at 16.20%, while the total ginsenoside content obtained by other treatments decreased in the order of T4, T5 (control), T2, and T3, at 13.21%, 12.30%, 14.84%, and 14.86%, respectively. The total ginsenoside content of the ginseng leaves was found to be significantly higher in the treatment of T1 in the lower layer of the nutrient bath, at 15.30%, while the content of the ginseng roots in the treatments of T3 and T4, at 1.27% and 1.23%, respectively, was significantly higher than in other treatments in the upper layer of the nutrient bath.