• Title/Summary/Keyword: culture pH variation

Search Result 61, Processing Time 0.031 seconds

Roles of Putative Sodium-Hydrogen Antiporter (SHA) Genes in S. coelicolor A3(2) Culture with pH Variation

  • Kim, Yoon-Jung;Moon, Myung-Hee;Lee, Jae-Sun;Hong, Soon-Kwang;Chang, Yong-Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.9
    • /
    • pp.979-987
    • /
    • 2011
  • Culture pH change has some important roles in signal transduction and secondary metabolism. We have already reported that acidic pH shock enhanced actinorhodin production in Streptomyces coelicolor. Among many potential governing factors on pH variation, the putative $Na^+/H^+$ antiporter (sha) genes in S. coelicolor have been investigated in this study to elucidate the association of the sha on pH variation and secondary metabolism. Through the transcriptional analysis and overexpression experiments on 8 sha genes, we observed that most of the sha expressions were promoted by pH shock, and in the opposite way the pH changes and actinorhodin production were enhanced by the overexpression of each sha. We also confirmed that sha8 especially has a main role in maintaining cell viability and pH homeostasis through $Na^+$ extrusion, in salt effect experiment under the alkaline medium condition by deleting sha8. Moreover, this gene was observed to have a function of pH recovery after pH variation such as the pH shock, being able to cause the sporulation. However, actinorhodin production was not induced by the only pH recovery. The sha8 gene could confer on the host cell the ability to recover pH to the neutral level after pH variation like a pH drop. Sporulation was closely associated with this pH recovery caused by the action of sha8, whereas actinorhodin production was not due to such pH variation patterns alone.

Effects of p variation and phosphate limitation on the continuous fermentation of Clostridium acetobutylicum (pH 변화와 인산 제한이 Closoidium acetobutylicum의 연속발효에 미치는 영향)

  • 신순영;김병흥
    • KSBB Journal
    • /
    • v.5 no.1
    • /
    • pp.9-17
    • /
    • 1990
  • The growth and fermentation profiles of Clostridium acetobutylicum KCTC 1037 were examined in batch and continuous modes with pH variation and phosphate limitation. Clostridium acetobutylicum KCTC 10 37 grew better at pH 4.5 than at pH 5.5 or 6.5. Acetate and butyrate were produced at pH 5.5, whereas culture at pH 4.5 produced acetone and butanol. Solvent production was increased by the phosphate limitation in a batch culture, but in a phosphate-limited continuous culture for 400 hours steady-state solventogenesis was not observed. The induction and maintenance of solventogenesis presumably require not only acidic condition or phosphate limitation but also favourable bioenergetic condition.

  • PDF

Differences in Optimal pH and Temperature for Cell Growth and Antibody Production Between Two Chinese Hamster Ovary Clones Derived from the Same Parental Clone

  • Kim, Sung-Hyun;Lee, Gyun-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.712-720
    • /
    • 2007
  • To investigate clonal variations of recombinant Chinese hamster ovary(rCHO) clones in response to culture pH and temperature, serum-free suspension cultures of two antibody-producing CHO clones(clones A and B), which were isolated from the same parental clone by the limiting dilution method, were performed in a bioreactor at pH values in the range of 6.8-7.6, and two different temperatures, $33^{\circ}C\;and\;37^{\circ}C$. In regard to cell growth, clone A and clone B displayed similar responses to temperature, although their degree of response differed. In contrast, clones A and B displayed different responses to temperature in regard to antibody production. In the case of clone A, no significant increase in maximum antibody concentration was achieved by lowering the culture temperature. The maximum antibody concentration obtained at $33^{\circ}C$(pH 7.4) and $37^{\circ}C$(pH 7.0) were $82.0{\pm}2.6$ and $73.2{\pm}4.1{\mu}g/ml$, respectively. On the other hand, in the case of clone B, an approximately 2.5-fold increase in maximum antibody concentration was achieved by lowering the culture temperature. The enhanced maximum antibody concentration of clone B at $33^{\circ}C$($132.6{\pm}14.9{\mu}g/ml$ at pH 7.2) was due to not only enhanced specific antibody productivity but also to prolonged culture longevity. At $33^{\circ}C$, the culture longevity of clone A also improved, but not as much as that of clone B. Taken together, CHO clones derived from the same parental clone displayed quite different responses to culture temperature and pH with regards antibody production, suggesting that environmental parameters such as temperature and pH should be optimized for each CHO clone.

pH Effect on the Aerobic Biodegradation of Nitrophenolic Compound in SBR (니트로페놀화합물의 호기성생물분해시 pH 영향에 관한 연구)

  • Jo, Kwan-Hyung
    • Journal of Environmental Science International
    • /
    • v.16 no.7
    • /
    • pp.779-784
    • /
    • 2007
  • Dinitrophenol is preventing cells from making energy for growth and it has been suggested that pH may be important in mitigating effects of uncouplers. The effect of pH on toxicity of dinitrophenol at high concentration was investigated, over a pH range of 5.7 to 8.7. DNP inhibition was found to be strongly dependent on mixed liquor pH. The DNP degradation rate was highest in the pH range of 7.0 to 7.8; at pH 6.0 degradation of 0.41 mM dinitrophenol was significantly inhibited; at pH <5.7, dinitrophenol degradation was completely inhibited after approximately 25% of the dinitrophenol was degraded. However no significant effect of pH variation was seen on glucose uptake by the activated sludge mixed culture.

Effect of pH on the Degradation of 2, 4-Dinitrophenol in Sequencing Batch Reactor Process (연속회분식(連續回分式) 처리공정(處理工程)에 의한 2, 4-Dinitrophenol분해시(分解時) pH의 영향(影響))

  • Jo, Kwan-Hyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.1
    • /
    • pp.96-101
    • /
    • 1998
  • Substrate inhibition of 2,4-dinitrophenol (DNP) degradation was investigated using activated sludge which had been adapted to mineralize DNP. DNP is a metabolic uncoupler, preventing cells from making energy for growth and it has been suggested that pH may be important in mitigating effects of uncouplers. After acclimation of the activated sludge, the effect of pH on toxicity of DNP at high concentration (75 mg/L) was investigated, over a pH range of 5 to 9. DNP inhibition was found to be strongly dependent on mixed liquor pH. The DNP degradation rate was highest in the pH range of 6.95 to 7.84; at pH 5.94 degradation of 75 mg/L DNP was significantly inhibited; at pH < 5.77, DNP degradation was completely inhibited after approximately 30% of the DNP was degraded. By comparison, no significant effect of pH variation in the same range was seen on glucose uptake by the activated sludge culture.

  • PDF

A Study of Organic Acid Formation and Dialysis Culture in E. coli Fermentation (대장균 배양에서의 유기산 생성과 투석배양에 관한 연구)

  • 김인호
    • KSBB Journal
    • /
    • v.8 no.4
    • /
    • pp.382-389
    • /
    • 1993
  • In order to elucidate the effect of acetate ion on the growth of Escherichia coli, flask and fermentor cultures were performed using M9 and LB media. Acetic acid was secreted at a higher rate under the conditions of high glucose concentration as well as of richer medium, i. e., LB broth. The pH in flask culture could not be controlled as i fermentor and pH decreased with the formation of acetic acid. The inhibition effect of acetic acid was pronounced at a lower pH, and the effective inhibitory concentrations of acetic acid were 2.0g/l for LB flask culture, 4.0g/l for M9 flask culture, and 8.0g/l for M9 fermentor culture. Dialysis flask culture was designed to slowly provide E coli cells with glucose. Solid LB agar was layered under LB liquid medium with the variation of agar concentration and solid volume, The increase in the solid portion in the total volume(agar+liquid) resulted in the increase of the final cell concentration. This can be ascribed to the fact that the larger solid phase behaves like a larger reservoir for glucose and controls the growth of E. coli with a controlled rate.

  • PDF

In Vitro Culture of Entomopathogenic Nematode with Its Symbiont for Biopesticide (생물살충제를 위한 곤충병원선충 및 공생박테리아의 in vitro 배양)

  • 유연수;박선호
    • KSBB Journal
    • /
    • v.14 no.3
    • /
    • pp.303-308
    • /
    • 1999
  • An in vitro culture method for entomopathogenic nematode Steinernema glaseri was developed. A symbiotic bacterium was isolated from Steinernema glaseri and identified as Xenorhabdus nematophilus. Phase variation that differed in some biochemical characteristics of symbiotic bacterium was observed. Entomopathogenic nematodes carried only phase I bacterium in their guts. Phase I bacterium could be converted into phase II form in in vitro culture medium consisting of 5% yeast extract, 0.5% NaCl, 0.05% $K_2HPO_4$, $0.02% MgSO_4$.$7H_2O$. The optimum temperature for bacterial growth was $28^{\circ}C$. The pH of the culture medium increased up to 9.0-9.5 during the exponential growth period of the culture, regardless of initial pH 6-7. Various culture media such as chicken offal, dog food, bovine liver, peanut, and so on were tested for in vitro culture of the nematodes. The best medium for Steinernema glaseri production was obtained from concentrated homogenate of bovine liver and the nematode growth was highest at 80% bovine liver. In the co-culture of entomopathogenic nematode with its symbiont, the growth rate of nematodes was 2 times faster than that without its symbiont and the nematode concentration reached about $5.5\times10^4$/mL within 15 days.

  • PDF

Varietal and Culture-Seasonal Variation in Physicochemical Properties of Rice Grain and Their Interrelationships (쌀의 식미 관련 이화학 성분의 품종 및 작기간 변이와 상관 관계)

  • 오용비
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.38 no.1
    • /
    • pp.72-84
    • /
    • 1993
  • This study was carried out to understand the varietal variation in physicochemical properties of rice grain and those environmental changes by different transplanting time, and to elucidate the interrelationships among the factors related with eating quality of cooked rice. Fifty three rice samples, among which fifty samples were harvested at ordinary or late transplanted plots of the Crop Experiment Station in Suwon and three samples were harvested orpurchased from Niigata prefecture in Japan, were tested for various physicochemical components of rice grain and some physical factors of cooked rice. All of twenty seven rice cultivars tested were the recent-bred Korean japonica rice showing the wide range of maturity from early to medium-late heading and considerable difference in palatability of cooked rice. Amylose content, taste value by Nireco palatability tester (TVN), iodine blue color of cooking extracts(IB), and the ratio of IB /extracted solid amounts (ES) increased significantly by late transplanting, while viscosity (VN) and Mg / K. N value by Nireco tester, hot-water absorption of milled rice (HA), loss tangent of cooked rice by Rheolograph-Micro(LT), and most viscogram characteristics except setback viscosity (C-P) decreased drastically by late transplanting as compared with ordinary transplanting. Most of physicochemical properties of milled rice revealed narrower varietal variation in lately transplanted plot than in ordinary transplanted one. Protein content (PRO), volume expansion rate of cooked rice(VE), C-P and all physical factors of cooked rice by Rheolograph-Micro showed almost negligible seasonal variation, while amylose content (AM), VN, HA, IB/ES, peak viscosity(P), hot viscosity(H) and breakdown(P-H) viscosity exhibited considerably large seasonal variation. The early-headed varieties revealed lower amylose content and smaller seasonal variation of IB/ES compared with medium or medium-late headed rice varieties. AM was closely associatied with IB and IB / ES and VN was highly correlated with Mg/K. N and TVN in both ordinary and late transplanted plots. VN also was highly negatively correlated with cooking characteristics and highly positively correlated with viscogram properties in ordinary culture. PRO was closely connected with moisture content of milled rice and L T in ordinary transplanted plot. IB, which was closely connected with ES, was also singificantly associated LT, P and P-H in ordinary seasonal culture. IB/ES was highly negatively correlated with P, P-Hand P-H / C-P in ordinary culture but with LT and dynamic viscosity of cooked rice in late seasonal culture. The thirty rice cultivars were largely classified into two varietal groups by cluster analysis with physicochemical properties related with eating quality of cooked rice. Korean and Japanese high-quality rice cultivars were separately distributed in two respective varietal group.

  • PDF

Optimal Cultur Conditions for the Production of Insecticidal Toxin by Xenorhabdus nematophilus Isolated from Steinernema carpocapsae (Steinernema carpocapsae로부터 분리된 Xenorhabdus nematophilus에 의한 살충물질 생산을 위한 최적 배양조건)

  • 유연수;박선호
    • KSBB Journal
    • /
    • v.15 no.1
    • /
    • pp.100-105
    • /
    • 2000
  • Optimal medium composition, culture conditions, characteristics of phase variation and activity of insecticidal toxin by Xenorhabdus nematophilus isolated and identified from Korean entomopathogenic nematode Steinernema carpocapsae were examined. Optimal medium composition of this strain was 50-70 g/L yeast extract, 3 g/L $K_{2}HPO_{4}$, 1g/L $NH_{4}H_{2}PO_{4}$, 2g/L ${MgSO}_4$$\cdot$${7H}_{2}O$, 10g/L NaCl and, these, yeast extract was found as a limiting nutrient for cell growth. When Monod equation was applied, maxmum specific growth rate and Monod constant were estimated as 0.13 $hr^{-1}$ and 20g/L, respectively. The pH of culture medium increased up to 8.5-9.5 regardless of initial pH 6-7 as the cells continued to grow. The specific growth rate in a 7 L fermentor was 0.18 $hr^{-1}$, which was enhancement 1.4 fold compared to a flask culture. In case of phase variation, phase I fraction was maintained above 90% at the stationary phase for both flask and fermentor cultures. According to oral toxicity test of Gallena mellonella by Xenorhabdus nematophilus, the addition of cell pellets into feed inhibited normal growth of insect larvae and killed completely then after 20 days cultivation. When culture supernatant of this strain was injected into hemolymph of insect larva, the toxicity was strongest at 24hr cultivation in the early exponential phase and gradually decreased as the culture time proceeded.

  • PDF

Morphological Variation of Enterobacter sp. BL-2 in Acetate-mediated pH Environment for Excretive Production of Cationic Microbial Polyglucosamine Biopolymer

  • Son, Mi-Kyung;Hong, Soo-Jung;SaGong, Kuk-Hwa;Lee, Yong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.104-106
    • /
    • 2008
  • Enterobacter sp. BL-2 excretively produced a unique cationic polyglucosamine biopolymer PGB-1 comprised of more than 95% D-glucosamine in an acetate-mediated culture condition. The excretion of the biopolymer PGB-1 was closely associated with the cellular morphology of Enterobacter sp. BL-2, a feature highly dependable on the pH of the medium. The initially formed uneven and irregular surface cells were aggregated into the cell-biopolymer network structure connected by the adhesion modules of the cell-bound biopolymer. The excretive production of the biopolymer PGB-1 coincided with the disruption of the cell-biopolymer network, most actively at the medium pH of 8.0.