• Title/Summary/Keyword: cultural intelligence

Search Result 151, Processing Time 0.027 seconds

Issue tracking and voting rate prediction for 19th Korean president election candidates (댓글 분석을 통한 19대 한국 대선 후보 이슈 파악 및 득표율 예측)

  • Seo, Dae-Ho;Kim, Ji-Ho;Kim, Chang-Ki
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.199-219
    • /
    • 2018
  • With the everyday use of the Internet and the spread of various smart devices, users have been able to communicate in real time and the existing communication style has changed. Due to the change of the information subject by the Internet, data became more massive and caused the very large information called big data. These Big Data are seen as a new opportunity to understand social issues. In particular, text mining explores patterns using unstructured text data to find meaningful information. Since text data exists in various places such as newspaper, book, and web, the amount of data is very diverse and large, so it is suitable for understanding social reality. In recent years, there has been an increasing number of attempts to analyze texts from web such as SNS and blogs where the public can communicate freely. It is recognized as a useful method to grasp public opinion immediately so it can be used for political, social and cultural issue research. Text mining has received much attention in order to investigate the public's reputation for candidates, and to predict the voting rate instead of the polling. This is because many people question the credibility of the survey. Also, People tend to refuse or reveal their real intention when they are asked to respond to the poll. This study collected comments from the largest Internet portal site in Korea and conducted research on the 19th Korean presidential election in 2017. We collected 226,447 comments from April 29, 2017 to May 7, 2017, which includes the prohibition period of public opinion polls just prior to the presidential election day. We analyzed frequencies, associative emotional words, topic emotions, and candidate voting rates. By frequency analysis, we identified the words that are the most important issues per day. Particularly, according to the result of the presidential debate, it was seen that the candidate who became an issue was located at the top of the frequency analysis. By the analysis of associative emotional words, we were able to identify issues most relevant to each candidate. The topic emotion analysis was used to identify each candidate's topic and to express the emotions of the public on the topics. Finally, we estimated the voting rate by combining the volume of comments and sentiment score. By doing above, we explored the issues for each candidate and predicted the voting rate. The analysis showed that news comments is an effective tool for tracking the issue of presidential candidates and for predicting the voting rate. Particularly, this study showed issues per day and quantitative index for sentiment. Also it predicted voting rate for each candidate and precisely matched the ranking of the top five candidates. Each candidate will be able to objectively grasp public opinion and reflect it to the election strategy. Candidates can use positive issues more actively on election strategies, and try to correct negative issues. Particularly, candidates should be aware that they can get severe damage to their reputation if they face a moral problem. Voters can objectively look at issues and public opinion about each candidate and make more informed decisions when voting. If they refer to the results of this study before voting, they will be able to see the opinions of the public from the Big Data, and vote for a candidate with a more objective perspective. If the candidates have a campaign with reference to Big Data Analysis, the public will be more active on the web, recognizing that their wants are being reflected. The way of expressing their political views can be done in various web places. This can contribute to the act of political participation by the people.

Counseling Case Study of a Child with Peer Confliction due to Lack of Social Skills and Impulsiveness (사회적 기술 부족과 충동성으로 인해 또래갈등이 심한 분교아동의 상담사례)

  • Lee, In-Sun
    • The Korean Journal of Elementary Counseling
    • /
    • v.5 no.1
    • /
    • pp.227-253
    • /
    • 2006
  • It seems common for students living at a small county and islands to experience psychological conflicts and be unaccustomed in the peer society because they are not familiar with peer interaction and social skills. This is a case study of L (hereinafter called L) who was grown up in the sheltered school at a small county. L was psychologically disturbed because he couldn't get along well in the transferred school. It is the reason why he had lived in the sheltered school at a small county, so he had not enough exposure to interact with peer and social skills. Sometimes he was obstinate irrationally and when he had trouble with friends, he threw something out or went out of school and tricked juniors dangerously. The fact of disperse with families, parent's indifference, and hate of older brother made L to have ill feeling against family. He had low motivation and low self confident in learning because of short attention time and accumulated poor learning progress. In this study, he was evaluated at various area, such as, intelligent, affective, personal and inter-personal, before counselling. To evaluated the effect of the counselling, K-WISC-III, KPRC, sentence filling test, social adaptation ability test, etc, were administered right after the counselling was over and 8 weeks later. For specific information gathering and analysing, observation diary and deepen counselling were accomplished by homeroom teacher, his mother, and his peers. To correct his problematic behaviors, 13 counseling sessions were accomplished for 6 months and those counselling sessions were recorded and analysed definitely. Followings are the result of this case study. First, he was recovered from the anxiety of inter-personal interaction and he started to interact with peers. The result of sac scale score of KPRC profile was lower than before as much as average student after counseling and 8 weeks later. This reveals that the distress against interpersonal relation have settled. Especially, through the result of sentence filing test, he seemed to feel attachment to peers and be positive, active in the relation of peer. For instance, he was active in the open class lesson and interacted well with peers. It could be said that he overcame the psychological distress comparing with previous time. Second, he could apologize to his peer and juniors for his fault. His attitude were well shown in the letter from an old friend at the sheltered school, average KPRC profiling score comparing with previous counseling time, and remarkable decrease of attack scale score of teacher and peer. Third, his view toward family turn out positive. He recognized his situation that he lived apart from family and even worried about his parent's financial difficulty. Through solving the confliction with his older brother, he could acquire the feeling of family reunion. Fourth, his learning motivation and self-confidence were increased. He confirmed his future positively and he might be judged more attentive because his intelligence index was higher than before as much as average student. With the main goal of this study, verification for effectiveness of counseling. understanding and helping problematic students such as L who lives at a small county and island through investigation of their real situation and problems with the method of counseling and socio-cultural analysis is worthwhile. Identification of ideal relationship with peer is related with positive self-conception, harmonic social adaptation and development of child. It is time to investigate easy adaptive in classroom and well-organised program to acquire general social skills for sheltered school students at a small county and islands.

  • PDF

Ontology-based Course Mentoring System (온톨로지 기반의 수강지도 시스템)

  • Oh, Kyeong-Jin;Yoon, Ui-Nyoung;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.149-162
    • /
    • 2014
  • Course guidance is a mentoring process which is performed before students register for coming classes. The course guidance plays a very important role to students in checking degree audits of students and mentoring classes which will be taken in coming semester. Also, it is intimately involved with a graduation assessment or a completion of ABEEK certification. Currently, course guidance is manually performed by some advisers at most of universities in Korea because they have no electronic systems for the course guidance. By the lack of the systems, the advisers should analyze each degree audit of students and curriculum information of their own departments. This process often causes the human error during the course guidance process due to the complexity of the process. The electronic system thus is essential to avoid the human error for the course guidance. If the relation data model-based system is applied to the mentoring process, then the problems in manual way can be solved. However, the relational data model-based systems have some limitations. Curriculums of a department and certification systems can be changed depending on a new policy of a university or surrounding environments. If the curriculums and the systems are changed, a scheme of the existing system should be changed in accordance with the variations. It is also not sufficient to provide semantic search due to the difficulty of extracting semantic relationships between subjects. In this paper, we model a course mentoring ontology based on the analysis of a curriculum of computer science department, a structure of degree audit, and ABEEK certification. Ontology-based course guidance system is also proposed to overcome the limitation of the existing methods and to provide the effectiveness of course mentoring process for both of advisors and students. In the proposed system, all data of the system consists of ontology instances. To create ontology instances, ontology population module is developed by using JENA framework which is for building semantic web and linked data applications. In the ontology population module, the mapping rules to connect parts of degree audit to certain parts of course mentoring ontology are designed. All ontology instances are generated based on degree audits of students who participate in course mentoring test. The generated instances are saved to JENA TDB as a triple repository after an inference process using JENA inference engine. A user interface for course guidance is implemented by using Java and JENA framework. Once a advisor or a student input student's information such as student name and student number at an information request form in user interface, the proposed system provides mentoring results based on a degree audit of current student and rules to check scores for each part of a curriculum such as special cultural subject, major subject, and MSC subject containing math and basic science. Recall and precision are used to evaluate the performance of the proposed system. The recall is used to check that the proposed system retrieves all relevant subjects. The precision is used to check whether the retrieved subjects are relevant to the mentoring results. An officer of computer science department attends the verification on the results derived from the proposed system. Experimental results using real data of the participating students show that the proposed course guidance system based on course mentoring ontology provides correct course mentoring results to students at all times. Advisors can also reduce their time cost to analyze a degree audit of corresponding student and to calculate each score for the each part. As a result, the proposed system based on ontology techniques solves the difficulty of mentoring methods in manual way and the proposed system derive correct mentoring results as human conduct.

Studies on the ecological variations of rice plant under the different seasonal cultures -II. A study on the year variations and prediction of heading dates of paddy rice under the different seasonal cultures- (재배시기 이동에 의한 수도의 생태변이에 관한 연구 -II. 재배시기 이동에 의한 수도출수기의 년차간변이와 그 조기예측-)

  • Hyun-Ok Choi
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.3
    • /
    • pp.41-48
    • /
    • 1965
  • This study was aimed at knowing the magnitude of year variation in rice heading dates under the different seasonal cultures, and to estimate the heading date in advance. Using six rice varieties such as Kwansan, Suwon#82, Suwon #144, Norin#17, Yukoo#132 and Paltal, the early, ordinary and late seasonal cultures had been carried out at Paddy Crop Division, Crop Experiment Station at Suwon for the six-year period 1959 to 1964. In addition the data of the standard rice cultures at the Provincial Offices of Rural Development for the 12-year period 1953 to 1954, were analyzed for the purpose of clarifying a relationship between variation of rice heading dates and some of meteorological data related to the locations and years. The results of this study are as follows: 1. Year variation of rice heading dates was as high as 14 to 21 days in the early seasonal culture and 7 to 14 days in the ordinary seasonal culture, while as low as one to seven days in the late seasonal culture which was the lowest among three cultures. The magnitude of variation depended greatly on variety, cultural season and location. 2. It was found out that there was a close negative correlation between the accumulated average air temperature for 40 days from 31 days after seeding and number of days to heading in the early seasonal culture. Accordingly, it was considered possible to predict the rice heading date through calculation of the accumulated average air temperature for the above period and then the linear regression(Y=a+bx). On the other hand, an estimation of the heading date in the late seasonal culture requires for the further studies. In the ordinary seasonal culture, no significant correlation between the accumulated average air temperature and number of days to heading was obtained in the six-year experiments conducted at Suwon. There was a varietal difference in relationship between the accumulated average air temperature for 70 days from seeding and number of days to heading in the standard cultures at the provincial offices of rural development. Some of varieties showed a significant correlation between two factors while the others didn't show any significant correlation. However, there was no regional difference in this relationship.

  • PDF

Prediction of a hit drama with a pattern analysis on early viewing ratings (초기 시청시간 패턴 분석을 통한 대흥행 드라마 예측)

  • Nam, Kihwan;Seong, Nohyoon
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.33-49
    • /
    • 2018
  • The impact of TV Drama success on TV Rating and the channel promotion effectiveness is very high. The cultural and business impact has been also demonstrated through the Korean Wave. Therefore, the early prediction of the blockbuster success of TV Drama is very important from the strategic perspective of the media industry. Previous studies have tried to predict the audience ratings and success of drama based on various methods. However, most of the studies have made simple predictions using intuitive methods such as the main actor and time zone. These studies have limitations in predicting. In this study, we propose a model for predicting the popularity of drama by analyzing the customer's viewing pattern based on various theories. This is not only a theoretical contribution but also has a contribution from the practical point of view that can be used in actual broadcasting companies. In this study, we collected data of 280 TV mini-series dramas, broadcasted over the terrestrial channels for 10 years from 2003 to 2012. From the data, we selected the most highly ranked and the least highly ranked 45 TV drama and analyzed the viewing patterns of them by 11-step. The various assumptions and conditions for modeling are based on existing studies, or by the opinions of actual broadcasters and by data mining techniques. Then, we developed a prediction model by measuring the viewing-time distance (difference) using Euclidean and Correlation method, which is termed in our study similarity (the sum of distance). Through the similarity measure, we predicted the success of dramas from the viewer's initial viewing-time pattern distribution using 1~5 episodes. In order to confirm that the model is shaken according to the measurement method, various distance measurement methods were applied and the model was checked for its dryness. And when the model was established, we could make a more predictive model using a grid search. Furthermore, we classified the viewers who had watched TV drama more than 70% of the total airtime as the "passionate viewer" when a new drama is broadcasted. Then we compared the drama's passionate viewer percentage the most highly ranked and the least highly ranked dramas. So that we can determine the possibility of blockbuster TV mini-series. We find that the initial viewing-time pattern is the key factor for the prediction of blockbuster dramas. From our model, block-buster dramas were correctly classified with the 75.47% accuracy with the initial viewing-time pattern analysis. This paper shows high prediction rate while suggesting audience rating method different from existing ones. Currently, broadcasters rely heavily on some famous actors called so-called star systems, so they are in more severe competition than ever due to rising production costs of broadcasting programs, long-term recession, aggressive investment in comprehensive programming channels and large corporations. Everyone is in a financially difficult situation. The basic revenue model of these broadcasters is advertising, and the execution of advertising is based on audience rating as a basic index. In the drama, there is uncertainty in the drama market that it is difficult to forecast the demand due to the nature of the commodity, while the drama market has a high financial contribution in the success of various contents of the broadcasting company. Therefore, to minimize the risk of failure. Thus, by analyzing the distribution of the first-time viewing time, it can be a practical help to establish a response strategy (organization/ marketing/story change, etc.) of the related company. Also, in this paper, we found that the behavior of the audience is crucial to the success of the program. In this paper, we define TV viewing as a measure of how enthusiastically watching TV is watched. We can predict the success of the program successfully by calculating the loyalty of the customer with the hot blood. This way of calculating loyalty can also be used to calculate loyalty to various platforms. It can also be used for marketing programs such as highlights, script previews, making movies, characters, games, and other marketing projects.

A Comparative Study on Buddhist Painting, MokWooDo (牧牛圖: PA Comparative Study on Buddhist Painting, MokWooDo (牧牛圖: Painting of Bull Keeping) and Confucian/Taoist Painting, SipMaDo (十馬圖: Painting of Ten Horses) - Focused on SimBeop (心法: Mind Control Rule) of the Three Schools: Confucianism, Buddhism and Taoism -nd Control Rule) of the Three Schools: Confucianism, Buddhism and Taoism - (불가(佛家) 목우도(牧牛圖)와 유·도(儒·道) 십마도(十馬圖) 비교 연구 - 유불도(儒佛道) 삼가(三家)의 심법(心法)을 중심으로 -)

  • Park, So-Hyun;Lee, Jung-Han
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.40 no.4
    • /
    • pp.67-80
    • /
    • 2022
  • SipWooDo (十牛圖: Painting of Ten Bulls), a Buddhist painting, is a kind of Zen Sect Buddhism painting, which is shown as a mural in many of main halls of Korean Buddhist temples. MokWooDo has been painted since Song Dynasty of China. It paints a cow, a metaphor of mind and a shepherd boy who controls the cow. It comes also with many other types of works such as poetry called GyeSong, HwaWoonSi and etc. That is, it appeared as a pan-cultural phenomenon beyond ideology and nation not limited to Chinese Buddhist ideology of an era. This study, therefore, selects MokWooDo chants that represent Confucianism, Buddhism and Taoism to compare the writing purposes, mind discipline methods and ultimate goals of such chant literatures in order to integrate and comprehend the ideologies of such three schools in the ideologically cultural aspect, which was not fully dealt with in the existing studies. In particular, the study results are: First, the SipWooDo of Buddhist School is classified generally into Bo Myoung's MokWooDo and Kwak Ahm's SimWooDo (尋牛圖: Painting of Searching out a Bull). Zen Sect Buddhism goes toward nirvana through enlightenment. Both MokWooDo and SimWooDo of Buddhist School are the discipline method of JeomSu (漸修: Discipline by Steps). They were made for SuSimJeungDo (修心證道: Enlightenment of Truth by Mind Discipline), which appears different in HwaJe (畫題: Titles on Painting) and GyeSong (偈頌: Poetry Type of Buddhist Chant) between Zen Sect Buddhism and Doctrine Study Based Buddhism, which are different from each other in viewpoints. Second, Bo Myoung's MokWooDo introduces the discipline processes from MiMok (未牧: Before Tamed) to JinGongMyoYu (眞空妙有: True Vacancy is not Separately Existing) of SsangMin (雙泯: the Level where Only Core Image Appears with Every Other Thing Faded out) that lie on the method called BangHalGiYong (棒喝機用: a Way of Using Rod to Scold). On the other side, however, it puts its ultimate goal onto the way to overcome even such core image of SsangMin. Third, Kwak Ahm's SimWooDo shows the discipline processes of JeomSu from SimWoo (尋牛: Searching out a Bull) to IpJeonSuSu (入鄽垂手: Entering into a Place to Exhibit Tools). That is, it puts its ultimate goal onto HwaGwangDongJin (和光同塵: Harmonized with Others not Showing your own Wisdom) where you are going together with ordinary people by going up to the level of 'SangGuBori (上求菩提: Discipline to Go Up to Gain Truth) and HaHwaJungSaeng (下化衆生: Discipline to Go Down to Be with Ordinary People)' through SaGyoIpSeon (捨敎入禪: Entering into Zen Sect Buddhism after Completing a Certain Volume of Doctrine Study), which are working for leading the ordinary people of all to finding out their Buddhist Nature. Fourth, Shimiz Shunryu (清水春流)'s painting YuGaSipMaDo (儒家十馬圖: Painting of Ten Horses of Confucian School) borrowed Bo Myoung's MokWooDo. That is, it borrowed the terms and pictures of Buddhist School. However, it features 'WonBulIpYu (援佛入儒: Enlightenment of Buddhist Nature by Confucianism)', which is based on the process of becoming a greatly wise person through Confucian study to go back to the original good nature. From here, it puts its goal onto becoming a greatly wise person, GunJa who is completely harmonized with truth, through the study of HamYang (涵養: Mind Discipline by Widening Learning and Intelligence) that controls outside mind to make the mind peaceful. Its ultimate goal is in accord with "SangCheonJiJae, MuSeongMuChee (上天之載, 無聲無臭: Heaven Exists in the Sky Upward; It is Difficult to Get the Truth of Nature, which has neither sound nor smell)' words from Zhōngyōng. Fifth, WonMyeongNhoYin (圓明老人)'s painting SangSeungSuJinSamYo (上乘修真三要: Painting of Three Essential Things to Discipline toward Truth) borrowed Bo Myoung's MokWooDo while it consists of totally 13 sheets of picture to preach the painter's will and preference. That is, it features 'WonBulIpDo (援佛入道: Following Buddha to Enter into Truth)' to preach the painter's doctrine of Taoism by borrowing the pictures and poetry type chants of Buddhist School. Taoism aims to become a miraculously powerful Taoist hermit who never dies by Taoist healthcare methods. Therefore, Taoists take the mind discipline called BanHwanSimSeong (返還心性: Returning Back to Original Mind Nature), which makes Taoists go ultimately toward JaGeumSeon (紫金仙) that is the original origin by changing into a saint body that is newly conceived with the vital force of TaeGeuk abandoning the existing mind and body fully. This is a unique feature of Taoism, which puts its ultimate goal onto the way of BeopShinCheongJeong (法身淸淨: Pure and Clean Nature of Buddha) that is in accord with JiDoHoiHong (至道恢弘: Getting to Wide and Big Truth).

Attitude Confidence and User Resistance for Purchasing Wearable Devices on Virtual Reality: Based on Virtual Reality Headgears (가상현실 웨어러블 기기의 구매 촉진을 위한 태도 자신감과 사용자 저항 태도: 가상현실 헤드기어를 중심으로)

  • Sohn, Bong-Jin;Park, Da-Sul;Choi, Jaewon
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.165-183
    • /
    • 2016
  • Over the past decade, there has been a rapid diffusion of technological devices and a rising number of various devices, resulting in an escalation of virtual reality technology. Technological market has rapidly been changed from smartphone to wearable devices based on virtual reality. Virtual reality can make users feel real situation through sensing interaction, voice, motion capture and so on. Facebook.com, Google, Samsung, LG, Sony and so on have investigated developing platform of virtual reality. the pricing of virtual reality devices also had decreased into 30% from their launched period. Thus market infrastructure in virtual reality have rapidly been developed to crease marketplace. However, most consumers recognize that virtual reality is not ease to purchase or use. That could not lead consumers to positive attitude for devices and purchase the related devices in the early market. Through previous studies related to virtual reality, there are few studies focusing on why the devices for virtual reality stayed in early stage in adoption & diffusion context in the market. Almost previous studies considered the reasons of hard adoption for innovative products in the viewpoints of Typology of Innovation Resistance, MIR(Management of Innovation Resistant), UTAUT & UTAUT2. However, product-based antecedents also important to increase user intention to purchase and use products in the technological market. In this study, we focus on user acceptance and resistance for increasing purchase and usage promotions of wearable devices related to virtual reality based on headgear products like Galaxy Gear. Especially, we added a variables like attitude confidence as a dimension for user resistance. The research questions of this study are follows. First, how attitude confidence and innovativeness resistance affect user intention to use? Second, What factors related to content and brand contexts can affect user intention to use? This research collected data from the participants who have experiences using virtual rality headgears aged between 20s to 50s located in South Korea. In order to collect data, this study used a pilot test and through making face-to-face interviews on three specialists, face validity and content validity were evaluated for the questionnaire validity. Cleansing the data, we dropped some outliers and data of irrelevant papers. Totally, 156 responses were used for testing the suggested hypotheses. Through collecting data, demographics and the relationships among variables were analyzed through conducting structural equation modeling by PLS. The data showed that the sex of respondents who have experience using social commerce sites (male=86(55.1%), female=70(44.9%). The ages of respondents are mostly from 20s (74.4%) to 30s (16.7%). 126 respondents (80.8%) have used virtual reality devices. The results of our model estimation are as follows. With the exception of Hypothesis 1 and 7, which deals with the two relationships between brand awareness to attitude confidence, and quality of content to perceived enjoyment, all of our hypotheses were supported. In compliance with our hypotheses, perceived ease of use (H2) and use innovativeness (H3) were supported with its positively influence for the attitude confidence. This finding indicates that the more ease of use and innovativeness for devices increased, the more users' attitude confidence increased. Perceived price (H4), enjoyment (H5), Quantity of contents (H6) significantly increase user resistance. However, perceived price positively affect user innovativeness resistance meanwhile perceived enjoyment and quantity of contents negatively affect user innovativeness resistance. In addition, aesthetic exterior (H6) was also positively associated with perceived price (p<0.01). Also projection quality (H8) can increase perceived enjoyment (p<0.05). Finally, attitude confidence (H10) increased user intention to use virtual reality devices. however user resistance (H11) negatively affect user intention to use virtual reality devices. The findings of this study show that attitude confidence and user innovativeness resistance differently influence customer intention for using virtual reality devices. There are two distinct characteristic of attitude confidence: perceived ease of use and user innovativeness. This study identified the antecedents of different roles of perceived price (aesthetic exterior) and perceived enjoyment (quality of contents & projection quality). The findings indicated that brand awareness and quality of contents for virtual reality is not formed within virtual reality market yet. Therefore, firms should developed brand awareness for their product in the virtual market to increase market share.

Derivation of Digital Music's Ranking Change Through Time Series Clustering (시계열 군집분석을 통한 디지털 음원의 순위 변화 패턴 분류)

  • Yoo, In-Jin;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.3
    • /
    • pp.171-191
    • /
    • 2020
  • This study focused on digital music, which is the most valuable cultural asset in the modern society and occupies a particularly important position in the flow of the Korean Wave. Digital music was collected based on the "Gaon Chart," a well-established music chart in Korea. Through this, the changes in the ranking of the music that entered the chart for 73 weeks were collected. Afterwards, patterns with similar characteristics were derived through time series cluster analysis. Then, a descriptive analysis was performed on the notable features of each pattern. The research process suggested by this study is as follows. First, in the data collection process, time series data was collected to check the ranking change of digital music. Subsequently, in the data processing stage, the collected data was matched with the rankings over time, and the music title and artist name were processed. Each analysis is then sequentially performed in two stages consisting of exploratory analysis and explanatory analysis. First, the data collection period was limited to the period before 'the music bulk buying phenomenon', a reliability issue related to music ranking in Korea. Specifically, it is 73 weeks starting from December 31, 2017 to January 06, 2018 as the first week, and from May 19, 2019 to May 25, 2019. And the analysis targets were limited to digital music released in Korea. In particular, digital music was collected based on the "Gaon Chart", a well-known music chart in Korea. Unlike private music charts that are being serviced in Korea, Gaon Charts are charts approved by government agencies and have basic reliability. Therefore, it can be considered that it has more public confidence than the ranking information provided by other services. The contents of the collected data are as follows. Data on the period and ranking, the name of the music, the name of the artist, the name of the album, the Gaon index, the production company, and the distribution company were collected for the music that entered the top 100 on the music chart within the collection period. Through data collection, 7,300 music, which were included in the top 100 on the music chart, were identified for a total of 73 weeks. On the other hand, in the case of digital music, since the cases included in the music chart for more than two weeks are frequent, the duplication of music is removed through the pre-processing process. For duplicate music, the number and location of the duplicated music were checked through the duplicate check function, and then deleted to form data for analysis. Through this, a list of 742 unique music for analysis among the 7,300-music data in advance was secured. A total of 742 songs were secured through previous data collection and pre-processing. In addition, a total of 16 patterns were derived through time series cluster analysis on the ranking change. Based on the patterns derived after that, two representative patterns were identified: 'Steady Seller' and 'One-Hit Wonder'. Furthermore, the two patterns were subdivided into five patterns in consideration of the survival period of the music and the music ranking. The important characteristics of each pattern are as follows. First, the artist's superstar effect and bandwagon effect were strong in the one-hit wonder-type pattern. Therefore, when consumers choose a digital music, they are strongly influenced by the superstar effect and the bandwagon effect. Second, through the Steady Seller pattern, we confirmed the music that have been chosen by consumers for a very long time. In addition, we checked the patterns of the most selected music through consumer needs. Contrary to popular belief, the steady seller: mid-term pattern, not the one-hit wonder pattern, received the most choices from consumers. Particularly noteworthy is that the 'Climbing the Chart' phenomenon, which is contrary to the existing pattern, was confirmed through the steady-seller pattern. This study focuses on the change in the ranking of music over time, a field that has been relatively alienated centering on digital music. In addition, a new approach to music research was attempted by subdividing the pattern of ranking change rather than predicting the success and ranking of music.

An Ontology Model for Public Service Export Platform (공공 서비스 수출 플랫폼을 위한 온톨로지 모형)

  • Lee, Gang-Won;Park, Sei-Kwon;Ryu, Seung-Wan;Shin, Dong-Cheon
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.149-161
    • /
    • 2014
  • The export of domestic public services to overseas markets contains many potential obstacles, stemming from different export procedures, the target services, and socio-economic environments. In order to alleviate these problems, the business incubation platform as an open business ecosystem can be a powerful instrument to support the decisions taken by participants and stakeholders. In this paper, we propose an ontology model and its implementation processes for the business incubation platform with an open and pervasive architecture to support public service exports. For the conceptual model of platform ontology, export case studies are used for requirements analysis. The conceptual model shows the basic structure, with vocabulary and its meaning, the relationship between ontologies, and key attributes. For the implementation and test of the ontology model, the logical structure is edited using Prot$\acute{e}$g$\acute{e}$ editor. The core engine of the business incubation platform is the simulator module, where the various contexts of export businesses should be captured, defined, and shared with other modules through ontologies. It is well-known that an ontology, with which concepts and their relationships are represented using a shared vocabulary, is an efficient and effective tool for organizing meta-information to develop structural frameworks in a particular domain. The proposed model consists of five ontologies derived from a requirements survey of major stakeholders and their operational scenarios: service, requirements, environment, enterprise, and county. The service ontology contains several components that can find and categorize public services through a case analysis of the public service export. Key attributes of the service ontology are composed of categories including objective, requirements, activity, and service. The objective category, which has sub-attributes including operational body (organization) and user, acts as a reference to search and classify public services. The requirements category relates to the functional needs at a particular phase of system (service) design or operation. Sub-attributes of requirements are user, application, platform, architecture, and social overhead. The activity category represents business processes during the operation and maintenance phase. The activity category also has sub-attributes including facility, software, and project unit. The service category, with sub-attributes such as target, time, and place, acts as a reference to sort and classify the public services. The requirements ontology is derived from the basic and common components of public services and target countries. The key attributes of the requirements ontology are business, technology, and constraints. Business requirements represent the needs of processes and activities for public service export; technology represents the technological requirements for the operation of public services; and constraints represent the business law, regulations, or cultural characteristics of the target country. The environment ontology is derived from case studies of target countries for public service operation. Key attributes of the environment ontology are user, requirements, and activity. A user includes stakeholders in public services, from citizens to operators and managers; the requirements attribute represents the managerial and physical needs during operation; the activity attribute represents business processes in detail. The enterprise ontology is introduced from a previous study, and its attributes are activity, organization, strategy, marketing, and time. The country ontology is derived from the demographic and geopolitical analysis of the target country, and its key attributes are economy, social infrastructure, law, regulation, customs, population, location, and development strategies. The priority list for target services for a certain country and/or the priority list for target countries for a certain public services are generated by a matching algorithm. These lists are used as input seeds to simulate the consortium partners, and government's policies and programs. In the simulation, the environmental differences between Korea and the target country can be customized through a gap analysis and work-flow optimization process. When the process gap between Korea and the target country is too large for a single corporation to cover, a consortium is considered an alternative choice, and various alternatives are derived from the capability index of enterprises. For financial packages, a mix of various foreign aid funds can be simulated during this stage. It is expected that the proposed ontology model and the business incubation platform can be used by various participants in the public service export market. It could be especially beneficial to small and medium businesses that have relatively fewer resources and experience with public service export. We also expect that the open and pervasive service architecture in a digital business ecosystem will help stakeholders find new opportunities through information sharing and collaboration on business processes.

The Audience Behavior-based Emotion Prediction Model for Personalized Service (고객 맞춤형 서비스를 위한 관객 행동 기반 감정예측모형)

  • Ryoo, Eun Chung;Ahn, Hyunchul;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.73-85
    • /
    • 2013
  • Nowadays, in today's information society, the importance of the knowledge service using the information to creative value is getting higher day by day. In addition, depending on the development of IT technology, it is ease to collect and use information. Also, many companies actively use customer information to marketing in a variety of industries. Into the 21st century, companies have been actively using the culture arts to manage corporate image and marketing closely linked to their commercial interests. But, it is difficult that companies attract or maintain consumer's interest through their technology. For that reason, it is trend to perform cultural activities for tool of differentiation over many firms. Many firms used the customer's experience to new marketing strategy in order to effectively respond to competitive market. Accordingly, it is emerging rapidly that the necessity of personalized service to provide a new experience for people based on the personal profile information that contains the characteristics of the individual. Like this, personalized service using customer's individual profile information such as language, symbols, behavior, and emotions is very important today. Through this, we will be able to judge interaction between people and content and to maximize customer's experience and satisfaction. There are various relative works provide customer-centered service. Specially, emotion recognition research is emerging recently. Existing researches experienced emotion recognition using mostly bio-signal. Most of researches are voice and face studies that have great emotional changes. However, there are several difficulties to predict people's emotion caused by limitation of equipment and service environments. So, in this paper, we develop emotion prediction model based on vision-based interface to overcome existing limitations. Emotion recognition research based on people's gesture and posture has been processed by several researchers. This paper developed a model that recognizes people's emotional states through body gesture and posture using difference image method. And we found optimization validation model for four kinds of emotions' prediction. A proposed model purposed to automatically determine and predict 4 human emotions (Sadness, Surprise, Joy, and Disgust). To build up the model, event booth was installed in the KOCCA's lobby and we provided some proper stimulative movie to collect their body gesture and posture as the change of emotions. And then, we extracted body movements using difference image method. And we revised people data to build proposed model through neural network. The proposed model for emotion prediction used 3 type time-frame sets (20 frames, 30 frames, and 40 frames). And then, we adopted the model which has best performance compared with other models.' Before build three kinds of models, the entire 97 data set were divided into three data sets of learning, test, and validation set. The proposed model for emotion prediction was constructed using artificial neural network. In this paper, we used the back-propagation algorithm as a learning method, and set learning rate to 10%, momentum rate to 10%. The sigmoid function was used as the transform function. And we designed a three-layer perceptron neural network with one hidden layer and four output nodes. Based on the test data set, the learning for this research model was stopped when it reaches 50000 after reaching the minimum error in order to explore the point of learning. We finally processed each model's accuracy and found best model to predict each emotions. The result showed prediction accuracy 100% from sadness, and 96% from joy prediction in 20 frames set model. And 88% from surprise, and 98% from disgust in 30 frames set model. The findings of our research are expected to be useful to provide effective algorithm for personalized service in various industries such as advertisement, exhibition, performance, etc.