• 제목/요약/키워드: cultivation environment

검색결과 1,645건 처리시간 0.027초

Effects of Continuous Application of Green Manures on Microbial Community in Paddy Soil

  • Kim, Sook-Jin;Kim, Kwang Seop;Choi, Jong-Seo;Kim, Min-Tae;Lee, Yong Bok;Park, Ki-Do;Hur, Seonggi
    • 한국토양비료학회지
    • /
    • 제48권5호
    • /
    • pp.528-534
    • /
    • 2015
  • Green manure crops have been well recognized as the alternative for chemical fertilizer, especially N fertilizer, because of its positive effect on soil and the environment. Hairy vetch and green barley are the most popular crops for cultivation of rice in paddy field. This study was conducted to evaluate effects of hairy vetch and green barley on soil microbial community and chemical properties during short-term application (three years). For this study, treatments were composed of hairy vetch (Hv), green barley (Gb), hairy vetch + green barley (Hv+Gb), and chemical fertilizer without green manure crops (Con.). Hv+Gb treatment showed the highest microbial biomass among treatments. Principal component analysis (PCA) showed that PC1 (73.0 %) was affected by microbial biomass and PC2 (21.5 %) was affected by fungi, cy19:0/18:$1{\omega}7c$ (stress indicator). Combined treatment with hairy vetch and green barley could be more efficient than green manure crop treatment as well as chemical fertilizer treatment for improvement of soil microorganisms.

벼 재배 시 경운 및 재배방법에 의한 메탄발생 양상 (Changes in Methane Emissions from Paddy under Different Tillage and Cultivation Methods)

  • 김숙진;조현숙;최종서;박기도;장정숙;강신구;박정화;김민태;강인정;양운호
    • 한국작물학회지
    • /
    • 제61권4호
    • /
    • pp.251-256
    • /
    • 2016
  • 벼 재배시 경운과 재배방법 따른 메탄 발생량 및 토양탄소함량변화를 구명하기위해 경운-이앙, 경운-무논점파, 최소경운-건답직파 및 무경운-건답직파를 비교하는 시험을 수행한 결과 다음과 같다. 1. 메탄 발생량은 경운-이앙 처리구에서 가장 많았으며 경운-무논점파>최소경운-건답직파=무경운 건답직파 순으로 적었다. 2. 메탄의 발생량과 벼 생육과의 관계를 보면 생육초기 작물의 생체량이 많아질수록 메탄 발생량이 증가는 경향을 보였다. 3. 토양 탄소함량은 시험전과 비교하여 경운-이앙 처리구에서 가장 낮은 값을 나타내었고, 최소경운-건답직파와 무경운 처리구에서 높은 값을 나타내었다. 4. 최소경운-건답직파 및 무경운 처리구의 쌀수량이 경운-이앙 처리구에 비해 다소 적었으나 통계적으로 유의한 차이는 없었다.

Development and evaluation of a model for management of plant pests in organic cucumber cultivation

  • Ko, S.J.;Kang, B.R.;Kim, D.I.;Choi, D.S.;Kim, S.G.;Kim, H.K.;Kim, H.J.;Choi, K.J.;Kim, Y.C.
    • 한국유기농업학회지
    • /
    • 제19권spc호
    • /
    • pp.263-266
    • /
    • 2011
  • Crop protection strategies in organic horticulture aim to prevent insect pest and plant disease problems through utilization of non-chemical based control means. In order to develop a model for management of plant diseases and insects in organic cucumber cultivation, we compared efficacies between chemical pesticide spraying system and biological control means in semi-forcing and retarding cucumber cultivation during 2005 and 2006. Conventional chemical spray program using various chemical pesticides was applied 5 - 10 days intervals, while two different non-chemical pesticide application programs using two formulated biopesticides Topseed$^{TM}$ and Q-fect$^{TM}$, Suncho$^{TM}$, and Sangsungje$^{TM}$ (biocontrol agents 1) and using egg-yolk and cooking oil(EYCO), Bordeaux mixture, Suncho$^{TM}$, and Sangsungje$^{TM}$ (biocontrol agents 2) were applied 5 - 7 days intervals during entire cucumber cultivation period. Efficacy of both biocontrol agents programs was effective to comparable to conventional chemical pesitice spray program to control plant diseases such as powdery mildew and downy mildew as well as insect pests such as aphids and thrips which are known as major threats in cucumber organic cultivation. In this study, we established and evaluated an effective and economic crop protection strategy using various biological resources can be used to control plant diseases and pests simultaneously in organic cucumber cultivation field.

Effects of cultivation methods on methane emission in rice paddy

  • Kim, Sukjin;Choi, Jong-Seo;Kang, Shin-gu;Park, Jeong-wha;Yang, Woonho
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.319-319
    • /
    • 2017
  • Methane is the main greenhouse gas released from rice paddy field. Methane from paddy fields accounts for 11 % of the global total methane emission. The global warming potential (GWP) of methane is 25 times more than that of carbon dioxide on a mass basis. It is well known that most effective practice to mitigate methane in paddy is related to the water management during rice growing season and the use of organic matters. This study was conducted to investigate the effects of tillage and cultivation method on methane emission in paddy. Tillage (tillage and no-tillage) and cultivation methods (transplanting and direct seeding) were combined tillage-transplanting (T-T), tillage-wet hill seeding (T-W), tillage-dry seeding (T-D) and no-till dry seeding (NT-D) to evaluate methane mitigation efficiency. Daily methane emission was decreased on seeding treatments (T-W, T-D, NT-D) than transplanting treatment (T-T). Amount of methane emission during rice growing season is highest in T-T ($411.7CH_4\;kg\;ha^{-1}y^{-1}$) and lowest in NT-D treatment (89.7). In T-W and T-D treatments, methane emissions were significantly decreased by 36 and 51 % respectively compared with T-T. Methane emissions were highly correlated with the dry weight of whole rice plant ($R^2=0.62{\sim}0.93$). T-T treatment showed highest $R^2$ (0.93) among the four treatments. Rice grain yields did not significantly differ with the tillage and cultivation methods used. These results suggest that direct seeding practice in rice production could mitigate the methane emissions without loss in grain yield.

  • PDF

Implementation of A Thin Film Hydroponic Cultivation System Using HMI

  • Gyu-Seok Lee;Tae-Sung Kim;Myeong-Chul Park
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권4호
    • /
    • pp.55-62
    • /
    • 2024
  • 본 논문에서는 HMI 디스플레이를 활용하고 IoT 기술을 이용한 박막식 수경 재배 방식의 식물재배기를 제안한다. 기존의 식물재배기는 토양 기반의 재배로 관리가 어렵고, 개방된 재배 환경으로 인해 환경조건 최적화가 어려웠다. 또한 즉각적인 제어가 어려워 식물재배의 성장이 지연되어 식물재배에 대한 문제점이 있다. 이러한 문제를 해결하기 위해, MCU와 센서를 연결하여 재배 환경을 구축하고, HMI 디스플레이와 연동하여 환경정보를 확인하고 빠르게 제어할 수 있게 구현하였다. 또한, 환경정보의 변화를 최소화하기 위해 케이스를 적용하였다. 박막식 수경 재배시스템 구현으로 토양에 관한 관리를 편하게 하였고 동작과 제어를 통해 기능성을 높였으며, 디스플레이를 통해 환경정보를 쉽게 파악할 수 있다. 기존 재배기와 수경재배기에서의 작물 재배 실험으로 성장이 빠른 효과성을 확인하였다. 향후 연구 방향으로는 재배 환경정보 전송 및 저장, 비전 카메라를 활용한 성장 정보를 연동하고 비교하여 생육 정보를 최적화할 것이다. 이를 통해 효율적이고 안정적인 식물재배할 수 있을 것으로 기대한다.

Timing of Fusarium Head Blight Infection in Rice by Heading Stage

  • Kim, Yangseon;Kang, In Jeong;Shin, Dong Bum;Roh, Jae Hwan;Heu, Sunggi;Shim, Hyeong Kwon
    • Mycobiology
    • /
    • 제46권3호
    • /
    • pp.283-286
    • /
    • 2018
  • Fusarium graminearum causes the devastating plant disease Fusarium head blight and produces mycotoxins on small cultivated grains. To investigate the timeframe of F. graminearum infection during rice cultivation, a spore suspension of F. graminearum was applied to the rice cultivars Dongjin 1 and Nampyeongbyeo before and after the heading stage. The disease incidence rate was the highest (50%) directly after heading, when the greatest number of flowers were present, while only 10% of the rice infected 30 days after heading showed symptoms. To understand the mechanism of infection, an F. graminearum strain expressing green fluorescent protein (GFP) was inoculated, and the resulting infections were visually examined. Spores were found in all areas between the glume and inner seed, with the largest amount of GFP detected in the aleurone layer. When the inner part of the rice seed was infected, the pathogen was mainly observed in the embryo. These results suggest that F. graminearum migrates from the anthers to the ovaries and into the seeds during the flowering stage of rice. This study will contribute to uncovering the infection process of this pathogen in rice.