• Title/Summary/Keyword: cultivated soybean

Search Result 242, Processing Time 0.028 seconds

Anti-inflammatory and anti-allergic effect of soybean extracts produced by organic cultivation (유기농 대두 추출물의 항염증 및 항알레르기 효과)

  • Chung, Eun-Kyung;Seo, Eun-Hye;Park, Jun-Ho;Kim, Young-Nam;Kim, Kyung-Hee;Lee, Byung-Ryong
    • Proceedings of the Korean Society of Organic Agriculture Conference
    • /
    • 2009.12a
    • /
    • pp.103-113
    • /
    • 2009
  • This present study was carried out to investigate the biological effects of soybean extracts comparing organic and conventional cultivation. Cellular and molecular analysis was performed to determine anti-oxidative, anti-inflammatory, anti-apoptotic, and anti-inflammatory effects of both soybean extracts. First, we obtained various solvent extracts of soybeans such as water, ethanol, and methanol. Molecular and cellular analysis were performed with 0.1 mg/ml concentration of each solvent extracts. The results of anti-oxidative, anti-inflammatory and anti-apoptotic effects of organic cultivated soybean extracts were prominent than conventional cultivated soybean extracts. However, discrepancy between organic and conventional cultivated soybean extracts was not observed in anti-allergic effects determined by releasing histamine from rat mast cell line, RBL-2H3. Conclusively, organic cultivated soybeans have stronger effects than conventional cultivated soybeans in suppression of inflammation. In addition, organic soybeans could be applied as a functional food ingredient for treatment of chronic inflammation, asthma, and atopic dermatitis with enhanced anti-inflammatory activities.

  • PDF

Annul Variation of Soil Properties and Yield of Soybean in Paddy Field (콩 논 재배시 연차별 토양특성 및 생산력변화)

  • Kim, Min-Tae;Seo, Jong-Ho;Cho, Hyeoun-Suk;Seong, Ki-Yeong;Lee, Jong-Ki;Eom, Sun-Pyo;Jeon, Weon-Tai;Lee, Jang-Yong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.4
    • /
    • pp.370-374
    • /
    • 2007
  • This study was carried out to investigate the soil chemical and physical properties by annul variation and yield properties according to cropping rotation system of paddy field which was cultivated rice and soybean of each 1 year by turns, each 2 year by turns, 1 year of rice and 3 years of soybean and 4 years of soybean continuously. This study was conducted for 3 years from 2002 to 2004 in National Institute of Crop Science(NISC), Korea. Study was controlled by Shinpaldal 2 of midmatured species, sow a field with soybean by $60{\times}15cm$ in 27 May. Chemical fertilizer was spread in the field by N 3.0 kg, $P_2O_5 $ 3.0 kg, $K_2O$ 3.4 kg per 10a. This experiment was carried for increase the degree of self sufficiency of soybean from detect the better cropping system in paddy field. The results of the study were as follows; Soil prosity was increased 17.4% in each one year rotation and 21.8% in the sector of cultivated soybean for four years. Results was indicated that $5{\sim}9cm$ of stem length, $0.5{\sim}1.0ea$ of branch number and $3.5{\sim}7.0$ of SPAD value was decreased in the sector of cultivated soybean for $3{\sim}4$ years compared to $1{\sim}2$ year cultivated sector. The soybean yield was reduced 12.9%(222 kg/10a) in the 2 year cultivated sector and 21%(201 kg/10a) in the 3 year cultivated sector compare with paddy-upland switching cultivation(255 kg/10a). Root nodule weight and number was tend to decrease according to the increasing duration of cultivated soybean.

Effect of ion Chip and Yellow Soil on Growth and Physicochemical Characteristics of Soybean Sprouts (Ion Chip과 황토 처리가 콩나물의 생육 및 물리화학적 특성에 미치는 영향)

  • Kim In-Suk;Choi Sun-Young;Chung Mi-Ja;Kim Tae-Hoon;Sung Nak-Ju
    • The Korean Journal of Food And Nutrition
    • /
    • v.18 no.4
    • /
    • pp.316-324
    • /
    • 2005
  • The objectives of this study were to examine effect of ion chip and yellow soil on the growth and physicochemical characteristics of soybean sprouts. The weight and length increased rapidly in soybean sprouts cultivated for 4 days and then the increases slowed. Ascorbic acid increased rapidly after day 6 in soybean sprouts cultivated with ionized water (I.W), $1.0\%$ yellow soil in tap water (T.W+l.0) and $1.0\%$ yellow soil in ionized water (I.W+l.0). The detected content of minerals such as Mg, Ca, K and Fe in soybean sprouts was higher than other minerals. Iron content was the highest in soybean sprouts cultivated by I.W+1.0. The detected levels of glutamic acid in soybean sprouts cultivated for 4 days with ionized water was higher than in those grown with tap water. In all soybean sprouts, nucleotides such as UMP, CMP, AMP, Hx and soluble free sugars like sucrose, raffinose, stachylose were detected, and the levels of UMP were found to be the highest among nucleotides and sucrose among free sugars.

Physiological and Ecological Characteristics of Indigenous Soybean Rhizobia Distributed in Korea -II. Studies on Some Physiological Characteristics and Nitrogen Fixation Activity Under Free-Living Conditions of Indigenous Rhizobia (우리나라 토착대두근류균(土着大豆根瘤菌)의 분포상태(分布狀態)와 생리(生理) 및 생태학적(生態學的) 특성(特性) -제(第)II보(報) : 토착근류균(土着根瘤菌)의 질소고정력(窒素固定力)과 생리적특성(生理的特性)에 관(關)한 연구(硏究))

  • Ryu, Jin-Chang;Lee, Seong-Jae;Suh, Jang-Sun;Cho, Moo-Je
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.19 no.2
    • /
    • pp.157-165
    • /
    • 1986
  • This experiment was conducted to find out the some physiological characteristics and nitrogen fixation activities under free-living conditions of indigenous rhizobia isolated from soybean-cultivated (30 fields) and un-cultivated (30 fields) soil. The results were summerized as follows: 1. In free-living condition, only 12.8% and 6.4% of the indigenous rhizobia isolated from soybean cultivated (133 strains) and un-cultivated (125 strains) soils were nitrogenase positive as more than 4 n mole $C_2H_4$ per tube per hour by acetylene reduction assay. 2. The acid-producing rhizobia on litmus milk test was observed to be 20% of the total 160 strains isolated from soybean cultivated soil but about 34% of 166 strains isolated from un-cultivated soil. And the serum zone positive strains were higher in the soybean un-cultivated soil than cultivated soil. 3. The population ratio of fast-to slow-growing indigenous rhizobia based on growth pattern of AMA medium was 35.6% to 64.4% of the total 346 strains. 4. The population of indigenous Rhizobium japonicum counted by MPN method was ranged from $9.2{\times}10^2$ cells per gram of soil in soybean un-cultivated soil to $2.3{\times}10^4$ cells per gram of soil soybean cultivated soil. The number of indigenous R. japonicum in 0-10cm depth of surface layer was higher than low layer.

  • PDF

Diversity and Inheritance of AFLP Markers in Wild and Cultivated Soybeans (AFLP marker를 이용한 콩의 유전적 다양성과 유전분리 분석)

  • 김용호;윤홍태
    • Korean Journal of Plant Resources
    • /
    • v.17 no.3
    • /
    • pp.265-271
    • /
    • 2004
  • Genetic variation is the basis of crop improvement. Limited genetic diversity in a crop species may restrict the amount of genetic improvement that can be achieved through plant breeding. Soybean is one of the world's most important crops. A potential source of genetic variability for the cultivated soybean is the wild species G. soja Sieb. & Zucc. Amplified fragment length polymorphism (AFLP) analysis is a PCR-based technique, which can detect a 10-fold greater nubmer of loci than other DNA marker analysis. Twenty cultivated soybeans and two-hundred wild soybeans were used to determine genetic vatiations by AFLPs and evaluate the usefulness of AFLPs as DNA markers. Six-hundred and ten fragments were detected with an average of 56 AFLP fragments produced per primer in a total of 11 AFLP primer pairs. The number of polymorphic loci detected per primer ranged from 7 to 20 and the polymorphism was greater in wild than in cultivated soybean. F$_2$ segregation analysis of four AFLP fragments in combination of Hwaeomputkong ${\times}$ PI 417479 indicated that they segregate as stable Mendelian loci with 3 : 1. This results strongly suggest that the AFLP analysis is a good technique for the detection of genetic polymorphism in a wide plant species.

Antigenotoxic Effect of Paecilomyces tenuipes Cultivated on Soybeans in a Rat Model of 1,2-Dimethylhydrazine-induced Colon Carcinogenesis

  • Park, Eun-Ju;Jeon, Gyeong-Im;Park, Nam-Sook;Jin, Byung-Rae;Lee, Sang-Mong
    • Food Science and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.1064-1068
    • /
    • 2007
  • We evaluated the effect of soybean dongchunghacho [SD, cultivated dongchunghacho fungus (Paecilomyces tenuipes) on soybeans] on dimethylhydrazine (DMH)-induced DNA damage and oxidative stress in male F344 rats. The animals were divided into 3 groups and fed a casein-based high-fat, low fiber diet without (DMH group) or with 13%(w/w) of soybean (DMH+S group), or SD (DMH+SD group). One week after beginning the diets, rats were treated weekly with DMH (30 mg/kg, s.c.) for 6 weeks; dietary treatments were continued for the entire experiment and endpoints measured at 9 weeks after the first DMH injection. SD supplementation reduced DMH-induced DNA damage in colon cells and reduced plasma lipid peroxidation. Thus, SD may have therapeutic potential for early-stage colon carcinogenesis.

Isolation and Characterization of Rhizobia from Soybean Cultivated in Korea (대두(大豆) 근류균(根瘤菌)의 분리(分離) 및 특성(特性))

  • Yun, Han-Dae;Cho, Moo-Je;Lee, Ke-Ho
    • Applied Biological Chemistry
    • /
    • v.30 no.2
    • /
    • pp.153-162
    • /
    • 1987
  • Soybean rhizobia were isolated from 101 soybean (Glycine max.) cultivar which had been grown for the breeding experiment in Korea. Seven strains of the fast-growing soybean rhizobia and nine strains of the slow-growing soybean rhizobia were selected on the basis of their growth rate in AMA medium and their high ability of nodulation. The slow-growing soybean rhizobia were identified as Bradyrhizobium japonicum in the acetylene-reducing activity, microbial characteristics, and biochemical characteristics whereas the fast-growing soybean rhizobia were very similar to Rhizobium fredii.

  • PDF

Weed Occurrence and Control at Soybean Culture in Rice-Soybean Rotated Paddy Field (답전윤환(畓田輪換) 콩 재배지(栽培地)에서의 잡초발생(雜草發生) 및 방제(防除))

  • Kim, K.U.;Shin, D.H.;Park, S.J.;Jeong, J.W.;Hwang, S.S.
    • Korean Journal of Weed Science
    • /
    • v.15 no.4
    • /
    • pp.313-320
    • /
    • 1995
  • The major weeds observed in soybean(Glycine max(L.) Merr.) culture at the paddy field where transplanted rice was cultivated in previous year were Digitaria spp., Echinochloa spp., Chenopodium ficifolium, Rorippa islandica and Stellaria alsine. C. ficifolium and R. islandica increased as soybean was cultivated for two years in the same field. Weed biomass decreased by 84.8% as the seeding date was delayed from April 26 to May 20. Most of weeds started to emerge from 20 days after seeding(DAS) until 40 DAS, and higher seed yield was obtained by eliminating the weeds emerged until 40 DAS. The development of soybean branches, pods stem diameter was severely injured by weed interference, and thus soybean seed yield was reduced by 70% in comparison with a full season weed free plot. Herbicides such as pendimethalin, metolachlor, metolachlor+prometryn and alachlor controlled very effectively weeds present in soybean culture in rice-soybean rotated paddy field.

  • PDF

Antioxidant Activities of Various Black Soybean Tissues (Glycine max L.) Harvested from Different Cultivation Regions (재배지역에 따른 검정콩 부위별 추출물의 항산화 활성)

  • Kim, Hyun Young;Wo, So-Yeun;Yang, Ji Yeong;Song, Seung-Yeob;Seo, Woo Duck;Lee, Mi Ja;Choi, Man-Soo
    • The Korean Journal of Food And Nutrition
    • /
    • v.34 no.4
    • /
    • pp.331-339
    • /
    • 2021
  • With the aim of developing region specialized crops, this study was conducted to clarify effects of variant and cultivation region on antioxidative activities in various black soybean (Glycine max L.) seed tissues. Three black soybean varieties (SCEL-1, Wonheug, and Cheongja 3) were each cultivated in 4 different regions (Jeonju, Pyeongchang, Paju, and Cheonan). Harvested seeds were used to assess DPPH and ABTS radical scavenging activity, and total polyphenol, flavonoid and anthocyanin content. SCEL-1 soybean hull contained higher DPPH and ABTS radical scavenging activity (61% and 85% respectively) compared to Wonheug (40% and 50% respectively). SCEL-1 cultivated in Pyeongchang displayed the highest total polyphenol and flavonoid content (1,189 mg GAE/100g sample and 951 mg CTE/ 100g sample, respectively). Total anthocyanin content was ranked in the following order: SCEL-1>Wonheug>Cheongja 3. All black soybeans showed much higher antioxidant activity in the soybean hull than in the dehulled soybean. The antioxidant activity of black soybeans cultivated at high latitudes was high. These results suggest that the best black soybean variant for high beneficial biological activities is the SCEL-1 variant. For a complete understanding of the potential of black soybean as functional foods, we plan to further analyze their antioxidant activities in future studies.

Development of Molecular Markers to Detect Diaporthe spp. from Decayed Soybean Seeds

  • Seongho Ahn;Nguyen Thi Diem Thuy
    • Mycobiology
    • /
    • v.51 no.6
    • /
    • pp.463-467
    • /
    • 2023
  • Soybean is one of the world's most widely cultivated food crops, and soybean seeds are supplied from national seed resources in Korea. However, the transmission of seed-borne diseases through infected soybean seeds is problematic. Among these diseases, soybean seed decay is caused by Diaporthe spp. Infecting the pods, and the infected seeds show rotting symptoms. Most diseased seeds are removed during the selection process; however, it is difficult to distinguish infected seeds that do not display symptoms. Hence, a sequencebased method was devised to screen Diaporthe-infected seeds. Based on the nuclear ribosomal internal transcribe spacer (ITS) region of the pathogen, a primer was designed to distinguish the infection from other soybean seed pathogens. As a result of the comparison between healthy and Diaporthe-diseased seeds by using the primers, Diaporthe was detected only in the diseased seeds. Therefore, it is possible to distribute healthy soybean seeds by detecting Diaporthe-diseased seeds at the genetic level using the Diaporthe-specific primers.