• Title/Summary/Keyword: cultivated environment

Search Result 652, Processing Time 0.023 seconds

A Study on the Water Consumption of the Spring Chinese Cabbage in Greenhouse (온실재배 봄배추의 소비수량에 대한 고찰)

  • 윤용철;이종창;서원명;이근후
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.411-417
    • /
    • 1999
  • This study was performed to figure out an optimum water environment and to obtain the fundamental data related with saving labor and water consumption for the chinese cabbage being grown in greenhouse . The productivity of cabbage cultivated in boty pots and floor were compared to each other in the aspects of height and weight depending on the soil saturation levels. Obtained results are as follows. ; In case of pot cultivation , the height as well as weight of cabbage in 80% soil saturation level(P80) were measured to be larger than those in the other 2 soil saturation leves (P100 and P60). The weight of floor cultivated cabbages were relatively larger than that of pot cultivated ones. In accordance with saturation ration, the general trend of water consumption rate was maximum in P80 and was decreased in the order of P80 , P100 and P60. And the average indoor temperature as well as the plant growth rate were found to be closely related with water consumption rate.

  • PDF

Proteome Analysis of various types of Panax ginseng using 2-Dimensional Electrophoresis (인삼, 산양삼 및 산삼의 부위별 Proteome분석)

  • We, Jong-Sung;Park, Hee-Soo;Kwon, Ki-Rok
    • Journal of Pharmacopuncture
    • /
    • v.10 no.2 s.23
    • /
    • pp.5-18
    • /
    • 2007
  • Objectives : The purpose of this study was to obtain an objective differentiating method for various types of Panax ginseng: ginseng, cultivated wild ginseng, and natural wild ginseng which are distinctive according to their growing environment. Methods : The roots, stem, and leaves of several types of ginseng were collected and comparative analysis of proteome was conducted on each part using 2-DE and the results examined. Results : 1. Proteome images of the respective parts within the samples showed spot-matching in most cases, suggesting that they are genetically identical panax ginseng. 2. Similar distribution patters were seen within the different parts of the Panax ginseng: ginseng, Chinese cultivated wild ginseng, and the 5 and 10 years old Korean cultivated wild ginseng. 3. For a quantitative evaluation of spots showing differences among the samples, 102 spots from the roots, 109 spots from the stems, and 132 spots form the leaves which showed a difference were selected and centrifugal identification was conducted. 4. Peculiar proteins from each respective part of the Panax ginseng were identified and the top 20 spots with significant differences were selected and analyzed in order to provide a differentiation rate among the samples. The accuracy rate ranged between 23.0-38.8%. 5. Differentiation rate of the top 10 spots with significant differences showed a 50-85% accuracy rate, and the differentiation rate was especially high for the stem of Chinese cultivated wild ginseng and Korean cultivated wild ginseng.

Soil properties of cultivation sites for mountain-cultivated ginseng at local level

  • Kim, Choonsig;Choo, Gap Chul;Cho, Hyun Seo;Lim, Jong Teak
    • Journal of Ginseng Research
    • /
    • v.39 no.1
    • /
    • pp.76-80
    • /
    • 2015
  • Background: Identifying suitable site for growing mountain-cultivated ginseng is a concern for ginseng producers. This study was conducted to evaluate the soil properties of cultivation sites for mountain-cultivated ginseng in Hamyang-gun, which is one of the most well-known areas for mountain-cultivated ginseng in Korea. Methods: The sampling plots from 30 sites were randomly selected on or near the center of the ginseng growing sites in July and August 2009. Soil samples for the soil properties analysis were collected from the top 20 cm at five randomly selected points. Results: Mountain-cultivated ginseng was grown in soils that varied greatly in soil properties on coniferous, mixed, and deciduous broad-leaved stand sites of elevations between > 200mand < 1,000 m. The soil bulk density was higher in Pinus densiflora than in Larix leptolepis stand sites and higher in the < 700-m sites than in > 700-m sites. Soil pH was unaffected by the type of stand sites (pH 4.35-4.55), whereas the high-elevation sites of > 700mwere strongly acidified, with pH 4.19. The organic carbon and total nitrogen content were lower in the P. densiflora stand sites than in the deciduous broad-leaved stand sites. Available phosphorus was low in all of the stand sites. The exchangeable cationwas generally higher in the mixed and low-elevation sites than in the P. densiflora and high-elevation sites, respectively. Conclusion: These results indicate that mountain-cultivated ginseng in Korea is able to grow in very acidic, nutrient-depleted forest soils.

Dynamic Runoff of Non-point Sources Pollutants from Agricultural Areas (농촌지역에서 유출시간에 따른 비점오염물질의 유출평가)

  • Yi, Qitao;Hur, Chinhyu;Kim, Youngchul
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.6
    • /
    • pp.773-783
    • /
    • 2008
  • In this paper, data collected from 22 different rural watersheds during stormflow conditions were analyzed. Those watersheds consisted of forest and cultivated land. EMC data analysis indicates that as agricultural land use increases, EMC values of TSS, COD and TN clearly tends to increase, but TP does not show a significant increase. Pattern of the pollutographs mostly has a similarity in hydrograph shape except nitrogen which inherently shows a variability and complication. The fraction of soluble reactive-P to TP increases as cultivated land use increases while mobile-nitrogen portion was higher in the runoff from forested watersheds than agricultural areas. During stormflow, pollutograph of the nitrogen was determined mainly by change in Particle-TKN as other pollutants but its effect is thought to be masked by decrease of dissolved form of nitrogen due to the dilution.

산삼과 산양삼 추출물의 항암 및 항산화 효능

  • Ahn, Young-Min;Park, Hee-Soo;Kwon, Ki-Rok
    • Journal of Pharmacopuncture
    • /
    • v.10 no.1 s.22
    • /
    • pp.5-16
    • /
    • 2007
  • Objectives : The aim of this study was to verify anti-cancer and anti-oxidant efficacies of Korean wild ginseng and cultivated wild ginseng of Korea and China. Methods : For the measurement of anti-oxidation, SOD-like activity was evaluated using xanthine oxidase reduction method under in vitro environment. Subcutaneous and abdominal cancer were induced using CT-26 human colon cancer cells for the measurement of growth inhibition of cancer cells and differences in survival rate. Results : 1. Measurement of anti-oxidant activity of ginseng, Chinese and Korean cultivated wild ginseng, and natural wild ginseng samples showed concentration dependent anti-oxidant activity in HX/XOD system. Anti-oxidant activity showed drastic increase at 1mg/ml in all samples. 2. For the evaluation of growth inhibition of cancer cells after hypodermic implantation of CT-26 cancer cells in the peritoneal cavity of mice, Chinese and Korean cultivated wild ginseng and natural wild ginseng groups showed significant inhibition of tumor growth from the 12th day compared to the control group. Similar inhibitory effects were also shown on the 15th and 18th days. But there was no significant difference between the experiment groups. 3. For the observation of increase in survival rate of the natural wild ginseng group, CT-26 cancer cells were implanted in the peritoneal cavity of mice.

Effect of Agricultural Practice and Soil Chemical Properties on Community-level Physiological Profiles (CLPP) of Soil Bacteria in Rice Fields During the Non-growing Season (논의 휴한기 이용형태와 토양화학성이 토양세균의 탄소원 이용에 미치는 영향)

  • Eo, Jinu;Kim, Myung-Hyun;Song, Young Ju
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.4
    • /
    • pp.219-224
    • /
    • 2019
  • BACKGROUND: Soil bacteria play important roles in organic matter decomposition and nutrient cycling during the non-growing season. The purpose of this study was to investigate the effects of soil management and chemical properties on the utilization of carbon sources by soil bacteria in paddy fields. METHODS AND RESULTS: The Biolog EcoPlate was used for analyzing community-level carbon substrate utilization profiles of soil bacteria. Soils were collected from the following three types of areas: plain, interface and mountain areas, which were tested to investigate the topology effect. The results of canonical correspondence analysis and Kendall rank correlation analysis showed that soil C/N ratio and NH4+ influenced utilization of carbon sources by bacteria. The utilization of carbohydrates and complex carbon sources were positively correlated with NH4+ concentration. Cultivated paddy fields were compared with adjacent abandoned fields to investigate the impact of cultivation cessation. The level of utilization of putrescine was lower in abandoned fields than in cultivated fields. Monoculture fields were compared with double cropping fields cultivated with barley to investigate the impact of winter crop cultivation. Cropping system altered bacterial use of carbon sources, as reflected by the enhanced utilization of 2-hydroxy benzoic acid under monoculture conditions. CONCLUSION: These results show that soil use intensity and topological characteristics have a minimal impact on soil bacterial functioning in relation to carbon substrate utilization. Moreover, soil chemical properties were found to be important factors determining the physiological profile of the soil bacterial community in paddy fields.

Soil organic carbon variation in relation to land use changes: the case of Birr watershed, upper Blue Nile River Basin, Ethiopia

  • Amanuel, Wondimagegn;Yimer, Fantaw;Karltun, Erik
    • Journal of Ecology and Environment
    • /
    • v.42 no.3
    • /
    • pp.128-138
    • /
    • 2018
  • Background: This study investigated the variation of soil organic carbon in four land cover types: natural and mixed forest, cultivated land, Eucalyptus plantation and open bush land. The study was conducted in the Birr watershed of the upper Blue Nile ('Abbay') river basin. Methods: The data was subjected to a two-way of ANOVA analysis using the general linear model (GLM) procedures of SAS. Pairwise comparison method was also used to assess the mean difference of the land uses and depth levels depending on soil properties. Total of 148 soil samples were collected from two depth layers: 0-10 and 10-20 cm. Results: The results showed that overall mean soil organic carbon stock was higher under natural and mixed forest land use compared with other land use types and at all depths ($29.62{\pm}1.95Mg\;C\;ha^{-1}$), which was 36.14, 28.36, and 27.63% more than in cultivated land, open bush land, and Eucalyptus plantation, respectively. This could be due to greater inputs of vegetation and reduced decomposition of organic matter. On the other hand, the lowest soil organic carbon stock under cultivated land could be due to reduced inputs of organic matter and frequent tillage which encouraged oxidation of organic matter. Conclusions: Hence, carbon concentrations and stocks under natural and mixed forest and Eucalyptus plantation were higher than other land use types suggesting that two management strategies for improving soil conditions in the watershed: to maintain and preserve the forest in order to maintain carbon storage in the future and to recover abandoned crop land and degraded lands by establishing tree plantations to avoid overharvesting in natural forests.

Influence of Soil Zone Temperature on Growth of Grapevines(Vitis spp) (지온이 포도의 생육에 미치는 영향)

  • 김진한
    • Journal of Bio-Environment Control
    • /
    • v.9 no.4
    • /
    • pp.207-211
    • /
    • 2000
  • This study was conducted to investigate the effect of soil zone temperature on the growth responses of two grapevine varieties. Campbell Early was cultivated under unprotected environment and Black Olympia was cultivated in the greenhouse. As responses, growth, photosynthetic rate and contents of mineral elements as affected by four different soil zone temperatures (10, 15, 20, and $25^{\circ}C$)were examined. Weights of leaves, stems and roots were higher at 20 and $25^{\circ}C$ than at 10 or 15$^{\circ}C$ root zone temperature in both varieties. Chlorophyll concentration and photosynthetic rate were the greatest at 2$0^{\circ}C$ root zone temperature. Contents of phosphate, potassium, and calcium increased with increasing root zone temperature.

  • PDF

A Study on the Heavy Metal Contents in Herbal Medicines - Cultivated Herbal Medicines at North Gyeongbuk Area- (한약재의 중금속 평가 연구 - 경북북부지역 한약재를 중심으로 -)

  • Park Moon-Ki;Kim Seong-Young;Hwang Hyun-Uk
    • Journal of Environmental Science International
    • /
    • v.13 no.12
    • /
    • pp.1117-1122
    • /
    • 2004
  • We compared with heavy metal concentration of herbal medicines in products of Gyeongbuk and the other area of Korea. The concentration of heavy metal were studied for the estimation of quality in herbal medicines which is Bupleuri Radix, Paeoniae Radix, Dioscoreae Rhizoma and Astragali Radix in products of north Gyeongbuk area. The average levels of heavy metal of herbal medicines in Gyeongbuk area are as follows : Mercury is 0.037mg/kg, Chromium is 0.093mg/kg, Nickel is 0.108mg/kg, Copper is 0.475mg/kg, Zinc is 3.14mg/kg, Manganese is 1.52mg/kg, Iron is 7.83mg/kg, and Cadmium, Lead and Arsenic is not detected. It was very lower in concentrations than those of average Korea area. Therefore, Gyeongbuk area appear to be more proper to cultivated land than other area.. Minerals such as Ca and K were extracted more than Na and P in herbal medicines products of Gyeongbuk respectively. Minerals and heavy metal concentrations distributed in herbal medicines were analyzed. Little or no relationship was observed between minerals and heavy metals.