• Title/Summary/Keyword: cucumber plants

Search Result 393, Processing Time 0.025 seconds

Occurrence of Viruses and Viroids in Chrysanthemum Plants (Dendranthema morifolium) Cultivated in Yesan-gun, Chungcheongnam-do in Korea (충남 예산 지역의 국화에서 바이러스 및 바이로이드 병들의 발생 현황)

  • Yoon Hyun, Bang;Eun Gyeong, Song;Younghye, Lee;Ki Hyun, Ryu
    • Research in Plant Disease
    • /
    • v.28 no.4
    • /
    • pp.237-244
    • /
    • 2022
  • Chrysanthemum plants are one of the most economically important plants in South Korea. Both virus and viroid can cause diseases and economic damage to the plants. In this study, we investigated the detection of seven viruses and two viroids in 350 chrysanthemum plants cultivated in Yesan-gun, Chungcheongnam-do. Two viruses, chrysanthemum virus B (CVB) and tomato aspermy virus (TAV), and two viroids, chrysanthemum chlorotic mottle viroid (CChMVd) and chrysanthemum stunt viroid (CSVd), were detected in this study. The two viruses were detected in six samples and one sample, respectively. The two viroids were detected in 97 samples and 21 samples, respectively. The nucleotide sequences of the CVB-CN-Y, TAV-CN-Y, CChMVd-CN-Y, and CSVd-CN-Y obtained in this study showed 83.7-86.9%, 99.2-100.0%, 94.4-99.5%, and 95.7-99.7% identity, respectively, compared to their other strains/isolates. The CVB-CN-Y and TAV-CN-Y showed the greatest nucleotide sequence homology to CVB-GS1 and three TAV isolates (TAV-V, TAV-P, and TAV-ChJ), respectively. The CChMVd-CN-Y and CSVd-CN-Y showed the greatest nucleotide sequence homology to CChMVd-Horst and four CSVd isolates (Au1.1, K4pop, Sagae, and Tochigi), respectively. This study is the report on the infection rate of viruses and viroids in chrysanthemum plants cultivated in Yesan-gun in 2021.

Influence of Nutrient Supply on Growth, Mineral Nutrients and Carbohydrates in Cucumber (Cucumis sativus L.) (무기영양액 농도 차이가 오이 생육, 무기성분 흡수 및 탄수화물 합성에 미치는 영향)

  • Sung, Jwa-Kyung;Park, Sung-Yong;Lee, Su-Yeon;Lee, Ye-Jin;Lee, Ju-Young;Jang, Byong-Choon;Goh, Hyun-Gwan;Ok, Yong-Sik;Kim, Tae-Wan;Song, Beom-Heon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.1
    • /
    • pp.83-89
    • /
    • 2010
  • We investigated the growth of cucumber plants, the uptake and use of mineral nutrients, such as $NO_3$-N, $NH_4$-N, $K^+$, $Ca^{+}^{+}$, $Mg^{+}^{+}$ and $Na^+$, absorbed from media solution, and the synthesis and distribution of soluble sugars under nutrient-deficient condition. Difference in plant growth revealed after 20 days of treatment. Nitrate uptake in nutrient-deficient condition was significantly reduced compared with nutrient-normal treatment, and its distribution was primarily in petioles, stem, roots and less in leaves. In contrast, ammonium content was markedly predominated in fast growing organs, and it was significantly different in growing leaves, expanded leaves, and roots under similar growth conditions. $K^+$, lack by deficient nutrient condition, was found in growing leaves. The $Ca^{+}^{+}$ content did not show significant difference between treatments and a substantial portion of $Ca^{+}^{+}$ remained in petioles. The $Mg^{+}^{+}$ content was significantly higher in the leaves of nutrient-normal condition compared with nutrient-deficient condition while significantly lower in stem and roots. The behavior of $Na^+$ in plant was similar to $K^+$ although its content was relatively little. The highest $CO_2$ assimilation was observed in fully expanded leaves of nutrient-normal condition, which was 1.7 times higher compared with nutrient-deficient condition. The instantaneous water use efficiency (A/E) and the A/gsratio, which is an index of leaf intrinsic water use efficiency for individual leaves, was 1.2 and 1.1 times higher, respectively. The total soluble sugar (TSS) contents were highest in leaves followed by petioles, stems and roots, and in younger leaves. The growing leaves contained about 7,200 mg $kg^{-1}$ of TSS in nutrient-normal condition whereas the TSS contents in nutrient-deficient condition were not significantly different between leaves. The $Mg^{+}^{+}$ and $NH_4$- N were positively correlated with the TSS whereas $NO_3$ - N was negatively correlated.

Analysis of Thermotolerance in Hot Pepper Using the Antiserum Against Carrot HSP17

  • Hwang, Eun-Young;Hwang, Cheol-Ho;Yoo, Il-Woong
    • Journal of Plant Biotechnology
    • /
    • v.3 no.1
    • /
    • pp.7-12
    • /
    • 2001
  • An antiserum against the carrot HSP17 (17 KDa heat shock protein) was raised using the HSP17 purified after being expressed in a recombinant E.coli in order to develop an assay system for thermotolerance in crops. The DCHsp17.7 including the coding sequence corresponding to a carrot HSP17 protein was recombined within pET-32(b) vector and achieved a maximum expression in 4 hours after an induction in E.coli. The purified DCHsp17.7 was used as an antigen to generate the corresponding antibody. The polyclonal antiserum was confirmed for it's specificity only to the low molecular weight (1mw) HSP. Besides, the possibilities to use the antiserum to interact with 1mwHSPs from other plants such as rice, cucumber, tomato, and hot pepper were examined to be plausible. To reveal any specific correlation between the amounts of 1mwHSP expressed upon HS conditions and an acquisition of thermotolerance two different approaches have been applied. first, it has been shown that only the pre-HS conditions inducing the synthesis of HSP17 allowed for the seedlings to achieve an thermotolerance and to survive the following lethal condition. Second, a western analysis using 15 different collected lines of hot peppers was performed to distinguish each other in terms of the amount of 1mwHSP. The results indicated that all 14 hot pepper lines were able to synthesize HSPs in response to an exposure to HS conditions and the amounts of the proteins synthesized at different HS temperatures were variable among the lines. There are several different patterns of 1mwHSP synthesized as a function of temperature increase observed and their correlation to physiological aspects of thermotolerance remains to be analyzed.

  • PDF

Effect of Rice stripe virus NS3 on Transient Gene Expression and Transgene Co-Silencing

  • Sohn, Seong-Han;Huh, Sun-Mi;Kim, Kook-Hyung;Park, Jin-Woo;Lomonossoff, George
    • The Plant Pathology Journal
    • /
    • v.27 no.4
    • /
    • pp.310-314
    • /
    • 2011
  • Nonstructural protein 3 (NS3) encoded by RNA3 of Rice stripe virus (RSV), known to be a suppressor of gene silencing, was cloned and sequenced. The cloned NS3 gene is composed of 636 nucleotides encoding 211 deduced amino acids, and showed a high degree of similarity with the equivalent genes isolated from Korea, Japan and China. The NS3 gene promoted the enhancement of transient gene expression and suppressed transgene co-silencing. In the transient GFP expression via agroinfiltration, GFP expression was dramatically enhanced in terms of both protein yield and expression period in the presence of NS3. The highest accumulation of GFP protein reached to 6.8% of total soluble proteins, which corresponded to a two-fold increase compared to that obtained in the absence of NS3. In addition, NS3 significantly suppressed the initiation of GFP co-silencing induced by the additive GFP infiltration in GFP-transgenic Nicotiana benthamiana. The NS3 gene was also found to be a stronger suppressor than Cucumber mosaic virus 2b. These observations are believed to be derived from the strong suppressive effect of NS3 on gene silencing, and indicate that NS3 could be used as an effective enhancer for the rapid production of foreign proteins in plants.

Survey of the Incidence of Viral Infections in Calanthe spp. and Characterization of a GW Isolate of Cymbidium mosaic virus in Korea

  • Park, Chung Youl;Baek, Da Some;Oh, Jonghee;Choi, Jong-Yoon;Bae, Dae Hyeon;Kim, Jeong-Seon;Jang, Gil-Hun;Lee, Su-Heon
    • Research in Plant Disease
    • /
    • v.22 no.2
    • /
    • pp.65-71
    • /
    • 2016
  • Cymbidium mosaic virus (CymMV) is a major virus infecting orchid plants and causing economic loss. In this study, the incidence of viral infection in Calanthe spp. at the Korean Institute of Calanthe was investigated using reverse transcription polymerase chain reaction. The CymMV infection rate was 42%, and the two viruses Odontoglossum ringspot virus and Cucumber mosaic virus had frequencies of 8% and 2%, respectively. Additionally, we characterized an isolate of CymMV, CymMV-GW, using biological tests and examined the nucleotide sequence properties of its complete genome. CymMV-GW induced chlorotic ringspots and chlorotic spot symptoms in inoculated leaves of Chenopodium amaranticolor and Nicotiana benthamiana, respectively. In this study, we have for the first complete genome sequence of CymMV-GW in Korea. The CymMV-GW genome was 6,225 nucleotides in length, excluding the poly-(A) tail, and showed whole-genome nucleotide and amino acid sequence identities of 97.7% and 100%, respectively, with the NJ-1 isolate of CymMV. Here, we report the complete genome sequence of the CymMV-GW isolate and viral infection rates for Calanthe spp. in Korea.

Physiological Diversity between Morphological Phenotypes of Botrytis cinerea (잿빛곰팡이병균(Botrytis cinerea) 형태형 간의 생리적 다양성)

  • Kim, Byung-Sup;Park, Eun-Woo;Roh, Seong-Hwan;Cho, Kwang-Yun
    • The Korean Journal of Mycology
    • /
    • v.25 no.4 s.83
    • /
    • pp.320-329
    • /
    • 1997
  • Botrytis cinerea isolates obtained from infected plants of cucumber, tomato, and strawberry were divided into three groups (sporing, sclerotial, and mycelial types). Of which sclerotial types were the major group. There were no correlations between morphological phenotypes and responses to benzimidazole and dicarboximide fungicides. External structure of conidia of three phenotypes by scanning electron microscope was the same with verrucose surface. Mycelial type was the most virulent on fruits of eggplants. Comparative tests were carried out to examine correlations between the virulence and production of fungal enzymes such as phenol oxidases, pectin methyl esterases (PME), amylases, cellulases, ureases, ${\beta}-glucosidases$, and proteinases. There was no correlation among the phenotypes in production of phenol oxidases and ${\beta}-glucosidases$. However, there were significantly different from each other in PME, amylase, cellulase, urease, and protease activity.

  • PDF

Effect of Natural Plant Components on the Nitrite-scavenging (천연식물성분이 아질산염 소거에 미치는 영향)

  • 이수정;정미자;신정혜;성낙주
    • Journal of Food Hygiene and Safety
    • /
    • v.15 no.2
    • /
    • pp.88-94
    • /
    • 2000
  • The purpose of this presents is to investigate, using natural food extracts(Green tea; Camellia sinesis, Du'chung; Eucommia ulmoides Oliver, Eu sung cho; Houttuynia cordate Thunb, Sam back cho; Saurus Chinensis, Baek hwa sa seal oho; Oldenladia diffusa Roxb., Laver; Porphyra tenera, Sea mustard; Undaria pinnatifda and Sea staghorn; Condium fragile) and juices(Sweet pepper; Capsicum annuum var. angulosum, Kale; Brassia oleracea var. acephala, Cucumber; Cucumis sativus, Onion; Allium cepa, Tomato; Lycopericon esculentum, Maesil; Prunus mume, Plum; Prunus salicina and Grape; Vitis spp.), the effect of natural plant components on the nitrite-scavenging under the different levels of pH. From the above mentioned extracts and juices, the content of vitamin C was detected, containing 65.1∼77.1 mg/100g, at the highest level in the Green tea, and followed by vegetables and fruits in order. The nitrite scavenging effect of teas, medicinal plants, and seaweed extracts, in the reaction system under the condition of pH 1.2, were 57.0∼100%, 50.0∼100%, and 18.0∼99.0%, respectively. Especially, the nitrite was scavenged to the level of 100%1 when 10 ml of kale and 5 ml of maesil Juice

  • PDF

Report on 30 unrecorded bacterial species of the phylum Firmicutes isolated from Korea in 2016

  • Nahar, Shamsun;Lee, Do-Hoon;Bae, Jin-Woo;Im, Wan-Taek;Jahng, Kwang Yeop;Joh, Kiseong;Kim, Wonyong;Lee, Soon Dong;Yi, Hana;Cha, Chang-Jun
    • Journal of Species Research
    • /
    • v.7 no.1
    • /
    • pp.50-59
    • /
    • 2018
  • During the course of investigation of indigenous prokaryotic species in Korea, a total of 30 bacterial strains belonging to the phylum Firmicutes were isolated from diverse environmental sites such as soil, avian feces, wastewater treatment plants, fermented vegetables, seawater, algae, sea cucumber, octopus and tidal flat sediment. Phylogenetic analysis based on 16S rRNA gene sequences revealed that each strain showed high sequence similarity (${\geq}98.7%$) to the closest type strain and formed a robust phylogenetic clade with the most closely related species in the phylum Firmicutes. To date, there is no official record of these 30 species in Korea. Therefore, we report 26 species of 12 genera in the order Bacillales and 4 species of 4 genera in the order Lactobacillales which have not been reported in Korea. Morphological and biochemical characteristics, isolation sources and NIBR deposit numbers are described in the species descriptions.

Characterization of Melon necrotic spot virus Isolated from Muskmelon

  • Park, Gug-Seoun;Kim, Jae-Hyun;Kim, Jeong-Soo
    • The Plant Pathology Journal
    • /
    • v.19 no.2
    • /
    • pp.123-127
    • /
    • 2003
  • A severe disease of muskmelon (Cucumis melo cv. Alsnight) grown on rockwool in a plastic house was characterized by leaf and stem necrosis followed by death of the plants. In 2001, an isolate of Melon necrotic spot virus-MN (MNSV-MN) of the genus Camovirus was identified as the causal agent of the disease on the basis of biological reactions and nucleotide sequence analyses of coat protein (CP) gene. MNSV-MN induced necrotic local lesions on mechanically inoculated leaves and systemic necrotic spots on the upper leaves of melon cvs. Alsnight, Rui III, Party, Imperial, and Seolhang. However, the inoculated leaves of watermelon and cucumber showed only necrotic lesions. DsRNAs extracted from the melon infected with MNSV-MN were separated into three components. Molecular sizes of the dsRNAs were estimated at approximately 4.5, 1.8, and 1.6 kbp. The amplified cDNA products of CP gene for MNSV-MN by RT-PCR showed approximately 1.2 kbp. The amplified DNA was digested to three fragments by MspI treatment. The cDNA of the genomic RNA of MNSV-MN was cloned and the region deduced to encode the CP was sequenced. The CP coding region, located near 3' end of the genome, consisted of 1,170 nucleotides and had the potential to encode a 390 amino acid protein. The nucleotide and amino acid sequences of MNSV-MN CP gene were 84.0-94.6% and 90.8-94.9% identical with other MNSV isolates found in the GeneBank database, respectively. This is the first report on the occurrence of MNSV in Korea.

Galactinol is Involved in Induced Systemic Resistance against Bacterial Infection and Environmental Stresses

  • Cho, Song-Mi;Kim, Su-Hyun;Kim, Young-Cheol;Yang, Kwang-Yeol;Kim, Kwang-Sang;Choi, Yong-Soo;Cho, Baik-Ho
    • Korean Journal of Plant Resources
    • /
    • v.23 no.3
    • /
    • pp.248-255
    • /
    • 2010
  • We previously demonstrated that root colonization of the rhizobacterium, Pseudomonas chlororaphis O6, induced expression of a galactinol synthase gene (CsGolS1), and resulting galactinol conferred induced systemic resistance (ISR) against fungal and bacterial pathogens in cucumber leaves. To examine the role of galactinol on ISR, drought or high salt stress, we obtained T-DNA insertion Arabidopsis mutants at the AtGolS1 gene, an ortholog of the CsGolS1 gene. The T-DNA insertion mutant compromised resistance induced by the O6 colonization against Erwinia carotovora. Pharmaceutical application of 0.5 - 5 mM galactinol on roots was sufficient to elicit ISR in wild-type Arabidopsis against infection with E. carotovora. The involvement of jasmonic acid (JA) signaling on the ISR was validated to detect increased expression of the indicator gene PDF1.2. The T-DNA insertion mutant also compromised tolerance by increasing galactinol content in the O6-colonized plant against drought or high salt stresses. Taken together, our results indicate that primed expression of the galactinol synthase gene AtGolS1in the O6-colonized plants can play a critical role in the ISR against infection with E. carotovora, and in the tolerance to drought or high salt stresses.