• Title/Summary/Keyword: cubic system

Search Result 419, Processing Time 0.025 seconds

Estimating the water supply capacity of Hwacheon reservoir for multi-purpose utilization (다목적 활용을 위한 화천댐 용수공급능력 평가 연구)

  • Lee, Eunkyung;Lee, Seonmi;Ji, Jungwon;Yi, Jaeeung;Jung, Soonchan
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.6
    • /
    • pp.437-446
    • /
    • 2022
  • In April 2020, the Korean government decided to operate the Hwacheon reservoir, a hydropower reservoir to supply water, and it is currently under pilot operation. Through the pilot operation, the Hwacheon reservoir is the first among the hydropower reservoirs in Korea to make a constant release for downstream water supply. In this study, the water supply capacity of the Hwacheon reservoir was estimated using the inflow data of the Hwacheon reservoir. A simulation model was developed to calculate the water supply that satisfies both the monthly water supply reliability of 95% and the annual water supply reliability of 95%. An optimization model was also developed to evaluate the water supply capacity of the Hwacheon reservoir. The inflow data used as input data for the model was modified in two ways in consideration of the impact of the Imnam reservoir. Calculating the water supply for the Hwacheon reservoir using the two modified inflows is as follows. The water supply that satisfies 95% of the monthly water supply reliability is 26.9 m3/sec and 24.1 m3/sec. And the water supply that satisfies 95% of the annual water supply reliability is 23.9 m3/sec and 22.2 m3/sec. Hwacheon reservoir has a maximum annual water supply of 777 MCM (Million Cubic Meter) without failure in the water supply. The Hwacheon reservoir can supply 704 MCM of water per year, considering the past monthly power generation and discharge patterns. If the Hwacheon reservoir performs a routine operation utilizing its water supply capacity, it can contribute to stabilizing the water supply during dry seasons in the Han River Basin.

제주도 지하수자원의 최적 개발가능량 선정에 관한 수리지질학적 연구

  • 한정상;김창길;김남종;한규상
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1994.07a
    • /
    • pp.184-215
    • /
    • 1994
  • The Hydrogeologic data of 455 water wells comprising geologic and aquifer test were analyzed to determine hydrogeoloic characteristics of Cheju island. The groundwater of Cheju island is occurred in unconsolidated pyroclastic deposits interbedded in highly jointed basaltic and andesic rocks as high level, basal and parabasal types order unconfined condition. The average transmissivity and specific yield of the aquifer are at about 29,300m$^2$/day and 0.12 respectively. The total storage of groundwater is estimated about 44 billion cubic meters(m$^3$). Average annual precipitation is about 3390 million m$^3$ among which average recharge amount is estimated 1494 million m$^3$ equivalent 44.1% of annual precipitation with 638 million m$^3$ of runoff and 1256 million m$^3$ of evapotranspiration. Based on groundwater budget analysis, the sustainable yield is about 620 million m$^3$(41% of annual recharge)and rest of it is discharging into the sea. The geologic logs of recently drilled thermal water wens indicate that very low-permeable marine sediments(Sehwa-ri formation) composed of loosely cemented sandy sat derived from mainly volcanic ashes, at the 1st stage volcanic activity of the area was situated at the 120$\pm$68m below sea level. And also the other low-permeable sedimentary rock called Segipo-formation which is deemed younger than former marine sediment is occured at the area covering north-west and western part of Cheju at the $\pm$70m below sea level. If these impermeable beds are distributed as a basal formation of fresh water zone of Cheju, most of groundwater in Cheju will be para-basal type. These formations will be one of the most important hydrogeologic boundary and groundwater occurences in the area.

  • PDF

Study on the Controlling Mechaniques of the Environmental Factors in the Mushroom Growing House in Chonnam Province (전남 지방에 있어서의 양송이 재배에 최적한 환경조건 조절법 분석에 관한 연구)

  • Chung, Byung-Jae;Lee, Eun-Chol
    • Journal of the Korean Wood Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.32-34
    • /
    • 1974
  • The important results which have been obtained in the investigation can be recapitulated as follows. 1. As demonstrated by the experimental results and analyses concerning their effects in the on-ground type mushroom house, the constructions in relation to the side wall and ceiling of the experimental house showed a sufficient heat insulation on effect to protect insides of the house from outside climatic conditions. 2. As the effect on the solar type experimental mushroom house which was constructed in a half basement has been shown by the experimental results and analyses, it has been proved to be effective for making use of solar heat. However there were found two problems to be improved for putting solar house to practical use in the farm mushroom growing: (1) the construction of the roof and ceiling should be the same as for the on ground type house, and (2) the solar heat generating system should be reconstructed properly. 3. Among several ventilation systems which have been studied in the experiments, the underground earthen pipe and ceiling ventilation, and vertical side wall and ceiling ventilation systems have been proved to be most effective for natural ventilation. 4. The experimental results have shown that ventilation systems such as the vertical side wall and underground ventilation systems are suitable to put to practical use as natural ventilation systems for farm mushroom house. These ventilation systems can remarkably improve the temperature of fresh air which is introduced into the house by heat transfers within the ventilation passages, so as to approach to the desired temperature of the house without any cooling or heating operation. For example, if it is assuming that X is the outside temperature and Y is the amount of temperature adjustment made by the influence of the ventilation system, the relationships that exist between X and Y can be expressed by the following regression lines. Underground iron pipe ventilation system. Y=0.9X-12.8 Underground earthen pipe ventilation system. Y=0.96X-15.11 Vertical side wall ventilation system. Y=0.94X-17.57 5. The experimental results have 8hown that the relationships existing between the admitted and expelled air and the $CO_2$ concentration can be described with experimental regression lines or an exponent equation as follows: 5.1 If it is assumed that X is an air speed cm/sec. and Y is an expelled air speed in cm/sec. in a natural ventilation system, since the Y is a function of the X, the relationships that exist between X and Y can be expressed by the regression lines shown below: 5.2 If it IS assumed that X is an admitted volume of air in $m^3$/hr. and Y is an expelled volume of air in $m^3$/hr. in a natural ventilation system, since the Y is a function of the X, the relationships that exist between X and Y can be expressed by the regression lines shown below. 5.3 If it is assumed that expelled air speed in emisec. and replacement air speed in cm/sec. at the bed surface in a natural ventilation system are shown as X and Y. respectively, since the Y is a function of the X. the relationships that exist between X and Y can be expressed by the following regression line: GE(100%)-CV (50%) ventilation system. Y=-0.54X+0.84 5.4 If it is assumed that the replacement air speed in cm/sec. at the bed surface is shown as X, and $CO_2$ concentration which is expressed by multiplying 1000 times the actual value of $CO_2$ % is shown as Y, in a natural ventilation system, since the Y is a function of the X, the relationships that exist between X and Y can be expressed by the following regression line: GE(100%)-CV(50%) ventilation system. Y=114.53-6.42X 5.5 If it is assumed that the expelled volume of air is shown as X and the $CO_2$ concencration which is expressed by multiplying 1000 times the actual of $CO_2$% is shown as Y in a natural ventilation system, since the Y is a function of the X, the relationships that exist between X and Y can be expressed by the following exponent equation: GE(100%)-CV(50%) ventilation system. Y=$127.18{\times}1.0093^{-x}$ 5.6 The experimental results have shown that the ratios of the cross sectional area of the GE and CV vent to the total cubic capacity of the house, required for providing an adequate amount of air in a natural ventilation system, can be estimated as follows: GE(admitting vent of the underground ventilation) 0.3-0.5% (controllable) CV(expelling vent of the ceiling ventilation) 0.8-1.0% (controllable) 6. Among several heating devices which were studied in the experiments, the hot-water boilor which wasmodified to be fitted both as hot-water boiler and as a pressureless steam-water was found most suitable for farm mushroom growing.

  • PDF

Development of Independent Target Approximation by Auto-computation of 3-D Distribution Units for Stereotactic Radiosurgery (정위적 방사선 수술시 3차원적 공간상 단위분포들의 자동계산법에 의한 간접적 병소 근사화 방법의 개발)

  • Choi Kyoung Sik;Oh Seung Jong;Lee Jeong Woo;Kim Jeung Kee;Suh Tae Suk;Choe Bo Young;Kim Moon Chan;Chung Hyun-Tai
    • Progress in Medical Physics
    • /
    • v.16 no.1
    • /
    • pp.24-31
    • /
    • 2005
  • The stereotactic radiosurgery (SRS) describes a method of delivering a high dose of radiation to a small tar-get volume in the brain, generally in a single fraction, while the dose delivered to the surrounding normal tissue should be minimized. To perform automatic plan of the SRS, a new method of multi-isocenter/shot linear accelerator (linac) and gamma knife (GK) radiosurgery treatment plan was developed, based on a physical lattice structure in target. The optimal radiosurgical plan had been constructed by many beam parameters in a linear accelerator or gamma knife-based radiation therapy. In this work, an isocenter/shot was modeled as a sphere, which is equal to the circular collimator/helmet hole size because the dimension of the 50% isodose level in the dose profile is similar to its size. In a computer-aided system, it accomplished first an automatic arrangement of multi-isocenter/shot considering two parameters such as positions and collimator/helmet sizes for each isocenter/shot. Simultaneously, an irregularly shaped target was approximated by cubic structures through computation of voxel units. The treatment planning method by the technique was evaluated as a dose distribution by dose volume histograms, dose conformity, and dose homogeneity to targets. For irregularly shaped targets, the new method performed optimal multi-isocenter packing, and it only took a few seconds in a computer-aided system. The targets were included in a more than 50% isodose curve. The dose conformity was ordinarily acceptable levels and the dose homogeneity was always less than 2.0, satisfying for various targets referred to Radiation Therapy Oncology Group (RTOG) SRS criteria. In conclusion, this approach by physical lattice structure could be a useful radiosurgical plan without restrictions in the various tumor shapes and the different modality techniques such as linac and GK for SRS.

  • PDF

TECHNICAL STUDY ON THE CONTROLLING MECHANIQUES OF THE ENVIRONMENTAL FACTORS IN THE MUSHROOM GROWING HOUSE IN CHONNAM PROVINCE (전남지방(全南地方)에 있어서의 양송이 재배(栽培)에 최적(最適)한 환경조건(環境條件) 조절법분석(調節法分析)에 관(關)한 연구(硏究))

  • Lee, Eun Chol
    • Journal of Korean Society of Forest Science
    • /
    • v.9 no.1
    • /
    • pp.1-44
    • /
    • 1969
  • The important results which have been obtained in the investigation can be recapitulated as follows. 1. As demostrated by the experimental results and analyses concerning their effects in the on-ground type mushroom house, the constructions in relation to the side wall and ceiling of the experimental houses showed a sufficient heat insulation on effect to protect insides of the houses from outside climatic conditions. 2. As the effect on the solar type experimental mushroom house which was constructed in a half basement has been shown by the experimental results and analyses, it has been proved to be effective for making use of solar heat. However there were found two problems to be improved for putting solar houses to practical use in the farm mushroom growing: (1) the construction of the roof and ceiling should be the same as for the on-ground type house, and (2) the solar heat generating system should be reconstructed properly. A trial solar heat generating system is shown in Fig. 40. 3. Among several ventilation systems which have been studied in the experiments, the underground earthen pipe and ceiling ventilation, and vertical side wall and ceiling ventilation systems have been proved to be most effective for natural ventilation. 4. The experimental results have shown that ventilation systems such as the vertical side wall and underground ventilation systems are suitable to put to practical use as natural ventilation systems for farm mushroom houses. These ventilation systems can remarkably improve the temperature of fresh air which is introduced into the house by heat transfers within the ventilation passages, so as to approach to the desired temperature of the house without any cooling or heating operation. For example, if it is assuming that x is the outside temperature and y is the amount of temperature adjustment made by the influence of the ventilation system, the relationships that exist between x and y can be expressed by the following regression lines. Underground iron pipe ventilation system ${\cdots}{\cdots}$ y=0.9x-12.8 Underground earthen pipe ventilation system ${\cdots}{\cdots}$y=0.96x-15.11 Vertical side wall ventilation system${\cdots}{\cdots}$ y=0.94x-17.57 5. The experimental results have shown that the relationships existing between the admitted and expelled air and the $Co_2$ concentration can be described with experimental regression lines or an exponent equation as follows: 1) If it is assumed that x is an air speed cm/sec. and y is an expelled air speed in cm/sec. in a natural ventilation system, since the y is a function of the x, the relationships that exist between x and y can be expressed by the regression lines shown below: 2) If it is assumed that x is an admitted volume of air in $m^3/hr$ and y is an expelled volume of air in $m^3/hr$ in a natural ventilation system, since the y is a function of the x, the relationships that exist between x and y can be expressed by the regression lines shown below. 3) If it is assumed that the expelled air speed in cm/sec and replacement air speed in cm/sec. at the bed surface in a natural ventilation system are shown as x and y, respectively, since the y is a function of the x, the relationships that exist between x and y can be expressed by the following regression line: G.E. (100%)- C.V. (50%) ventilation system${\cdots}$ y=0.54X+0.84 4) If it is assumed that the replacement air speed in cm/sec. at the bed surface is shown as x, and $CO_2$ concentration which is expressed by multiplying 1000 times the actual value of $CO_2$ % is shown as y, in a natural ventilation system, since the y is a function of the x the relationships that exist between x and y can be expressed by the following regression line: G.E. (100%)- C.V. (50%) ventilation system${\cdots}{\cdots}$ y=114.53-6.42x 5) If it is assumed that the expelled volume of air is shown as x and the $CO_2$ concentration which is expressed by multiplying 1000 times the actual of $CO_2$ % is shown as y in a natural ventilation system, since the y is a function of of the x, the relationships that exist between x and y can be expressed by the following exponent equation: G.E. (100%)-C.V. (50%) ventilation system${\cdots}{\cdots}$ $$y=127.18{\times}1.0093^{-X}$$ 6. The experimental results have shown that the ratios of the crass sectional area of the G.E. and C.V. vent to the total cubic capacity of the house, required for providing an adequate amount of air in a natural ventilation system, can be estimated as follows: G.E. (admitting vent of the underground ventilation)${\cdots}{\cdots}$ 0.30-0.5% (controllable) C.V. (expelling vent of the ceiling ventilation)${\cdots}{\cdots}$ 0.8-1.0% (controllable) 7. Among several heating devices which were studied in the experiments, the hot-water boilor which was modified to be fitted both as hot-water toiler and as a pressureless steam-water was found most suitable for farm mushroom growing.

  • PDF

Growth and Photocurrent Properties of CdIn2S4/GaAs Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy 법에 의한 CdIn2S4 단결정 박막의 성장과 광전류 특성)

  • Lee, Sang-Youl;Hong, Kwang-Joon;Park, Jin-Sung
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.309-318
    • /
    • 2002
  • A stoichiometric mixture of evaporating materials for $CdIn_2S_4$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $CdIn_2S_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperatures were $630^{\circ}C$ and $420^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CdIn_2S_4$ single crystal thin films measured with Hall effect by van der Pauw method are $9.01{\times}10^{16}\;cm^{-3}$ and $219\;cm^2/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $CdIn_2S_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=2.7116\;eV-(7.74{\times}10^{-4}\;eV)T^2/(T+434)$. The crystal field and the spin-orbit splitting energies for the valence band of the $CdIn_2S_4$ have been estimated to be 0.1291 eV and 0.0248 eV, respectively, by means of the photocurrent spectra and the Hopfield quasi cubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}5$ states of the valence band of the $AgInS_2$/GaAs epilayer. The three photocurrent peaks observed at 10K areascribed to the $A_1$-, $B_1$-, and C1-exciton peaks for n = 1.

Development of Solar Warehouse for Drying and Storing the Agricultural Products (농산물(農産物) 건조(乾燥) 및 저장(貯藏)을 위(爲)한 태양열(太陽熱) 저장고(貯藏庫)의 개발(開發)에 관(關)한 연구(硏究))

  • Kim, Man Soo;Chang, Kyu Seob;Kim, Soung Rai;Jeon, Byeong Seon
    • Korean Journal of Agricultural Science
    • /
    • v.9 no.1
    • /
    • pp.357-370
    • /
    • 1982
  • Recent concern regarding price and availability of fossil fuels has spurred the interest in alternative sources for farm crop drying. Among the available options such as biomass energy, wind power, nuclear energy and solar energy etc., the increasing attention is being directed to the utilization of heat from solar energy especially for farm crop drying. Even though solar energy is dispersed over a large land area and only a relatively small amount of energy can be simply collected, the advantages of solar energy is that the energy is free, non-polluting. The study reported here was designed to help supply the informations for the development of simple and relatively inexpensive solar warehouse for farm crop drying and storage. Specifically, the objectives of this study were to determine the performance of the solar collector fabricated, to compare solar supplemented heat drying with natural air drying and to develop a simulation model of temperature in stored grain, which can be used to study the effects due to changes in ambient air temperature. For those above objectives, solar collector was fabricated from available materials. Corrugated steel galvanized sheet, painted flat black, was used as absorbers and clear 0.2mm polyethylene sheet was the cover material. The warehouse for rough rice drying and storage was constructed with concrete block, and the solar collector was used as the roof of warehouse instead of original roofing system of it. The results obtained in this study were as follows: 1. The thermal efficiency of the solar collector was average 26 percent and the overall heat transfer coefficient of the collector was approximately $25kJ/hr.m^2\;^{\circ}K$. 2. Solar heated air was sufficient to dry one cubic meter of rough rice from 23.5 to 15.0 percent in 7 days and natural air was able to dry the same amount of rough rice from 20.0 to 5 percent in l2 days. 3. Drying with solar heat reduced the required drying time to dry the same amount of rough rice into a half compared to natural air drying, but overdrying problems of the bottom layer were so severe that these problems should be thoroughly analyzed. 4. Simulation model of temperature in stored grain was developed and the results of predicted temperature agreed well with test results. 5. Based on those simulated temperature, changes in the grain-temperature were a large at the points of the wallside and the damage of the grain would be severe at the contact area of wall.

  • PDF

Magnetic Properties of Superparamagnetic Ni-Zn Ferrite for Nano·Bio Fusion Applications (나노·바이오 융합응용을 위한 초상자성 Ni-Zn Ferrite의 자기적 특성연구)

  • Lee, Seung-Wha;Ryu, Yeon-Guk;Yang, Kea-Joon;An, Jung-Su;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.2
    • /
    • pp.100-105
    • /
    • 2005
  • $Ni_{0.9}Zn_{0.1}Fe_2O_4$ nanoparticles have been prepared by a sol-gel method. The structural and magnetic properties have been investigated by DTA/TGA, XRD, SEM, and $M\ddot{o}ssbauer$ spectroscopy, VSM. $Ni_{0.9}Zn_{0.1}Fe_2O_4$ powder that was annealed at $300^{\circ}C$ has spinel structure and behaved superparamagnetically. The estimated size of superparammagnetic Ni-Zn ferrite nanoparticle is around 10 nm. The hyperfine fields at 13 K for the A and B patterns were found to be 533 and 507 kOe, respectively. The blocking temperature ($T_B$) of superparammagnetic $Ni_{0.9}Zn_{0.1}Fe_2O_4$ nanoparticle is about 250 K. The magnetic anisotropy constant and relaxation time constant of $Ni_{0.9}Zn_{0.1}Fe_2O_4$ nanoparticle were calculated to be $1.6\times10^6\;ergs/cm^3$ and ${\tau}_0=5.0{\times}10^{-13}$ s, respectively. Also, Temperature increased up to $43^{\circ}C$ within 10 minutes under AC magnetic field of 7 MHz. It is considered that $Ni_{0.9}Zn_{0.1}Fe_2O_4$ powder that was annealed at $300^{\circ}C$ is available for biomedicine application such as hyperthermia, drug delivery system and contrast agents in MRI.

Analysis of Respiratory Motional Effect on the Cone-beam CT Image (Cone-beam CT 영상 획득 시 호흡에 의한 영향 분석)

  • Song, Ju-Young;Nah, Byung-Sik;Chung, Woong-Ki;Ahn, Sung-Ja;Nam, Taek-Keun;Yoon, Mi-Sun
    • Progress in Medical Physics
    • /
    • v.18 no.2
    • /
    • pp.81-86
    • /
    • 2007
  • The cone-beam CT (CBCT) which is acquired using on-board imager (OBI) attached to a linear accelerator is widely used for the image guided radiation therapy. In this study, the effect of respiratory motion on the quality of CBCT image was evaluated. A phantom system was constructed in order to simulate respiratory motion. One part of the system is composed of a moving plate and a motor driving component which can control the motional cycle and motional range. The other part is solid water phantom containing a small cubic phantom ($2{\times}2{\times}2cm^3$) surrounded by air which simulate a small tumor volume in the lung air cavity CBCT images of the phantom were acquired in 20 different cases and compared with the image in the static status. The 20 different cases are constituted with 4 different motional ranges (0.7 cm, 1.6 cm, 2.4 cm, 3.1 cm) and 5 different motional cycles (2, 3, 4, 5, 6 sec). The difference of CT number in the coronal image was evaluated as a deformation degree of image quality. The relative average pixel intensity values as a compared CT number of static CBCT image were 71.07% at 0.7 cm motional range, 48.88% at 1.6 cm motional range, 30.60% at 2.4 cm motional range, 17.38% at 3.1 cm motional range The tumor phantom sizes which were defined as the length with different CT number compared with air were increased as the increase of motional range (2.1 cm: no motion, 2.66 cm: 0.7 cm motion, 3.06 cm: 1.6 cm motion, 3.62 cm: 2.4 cm motion, 4.04 cm: 3.1 cm motion). This study shows that respiratory motion in the region of inhomogeneous structures can degrade the image quality of CBCT and it must be considered in the process of setup error correction using CBCT images.

  • PDF