• 제목/요약/키워드: cubic surfaces

Search Result 67, Processing Time 0.025 seconds

A Numerical Simulation of Three- Dimensional Nonlinear Free surface Flows (3차원 비선형 자유표면 유동의 수치해석)

  • Chang-Gu Kang;In-Young Gong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.1
    • /
    • pp.38-52
    • /
    • 1991
  • In this paper, a semi-Lagrangian method is used to solve the nonlinear hydrodynamics of a three-dimensional body beneath the free surface in the time domain. The boundary value problem is solved by using the boundary integral method. The geometries of the body and the free surface are represented by the curved panels. The surfaces are discretized into the small surface elements using a bi-cubic B-spline algorithm. The boundary values of $\phi$ and $\frac{\partial{\phi}}{\partial{n}}$ are assumed to be bilinear on the subdivided surface. The singular part proportional to $\frac{1}{R}$ are subtracted off and are integrated analytically in the calculation of the induced potential by singularities. The far field flow away from the body is represented by a dipole at the origin of the coordinate system. The Runge-Kutta 4-th order algorithm is employed in the time stepping scheme. The three-dimensional form of the integral equation and the boundary conditions for the time derivative of the potential Is derived. By using these formulas, the free surface shape and the equations of motion are calculated simultaneously. The free surface shape and fille forces acting on a body oscillating sinusoidally with large amplitude are calculated and compared with published results. Nonlinear effects on a body near the free surface are investigated.

  • PDF

Computer Simulation Studies of the Conformations of Polymeric Systems Near Surfaces as a Basic Research of the Elastomer (고무의 기초 연구로써 표면에 위치한 고분자 시스템 거동에 관한 수치모사 연구)

  • Kim, Myung-Yul;Park, Yung-Hoon
    • Elastomers and Composites
    • /
    • v.35 no.1
    • /
    • pp.29-37
    • /
    • 2000
  • In this study as a basic research of the elastomer, we show the results of the behavior of the two different chain length polymers in the melt confined between two impenetrable planes. The cubic lattice simulations are conducted in the canonical ensemble with a method that is a combination of reptation and crackshaft bond flip motions. A total of 680 chains which are 544 short chains comprising 10 beads and 136 long chains comprising 160 beads were placed in 20 lattice layers. It was assumed that there is no energetic interactions between covalently connected beads. while all other neighbors will interact with a truncated 6-12 Lennard-Jones potential. From the analysis of the simulation results, it was shown that purely entropic effects caused the shorter chains to partition preferentially to the surface. We also showed that the center of mass density of the shorter chains shows maximum near the surface. This is the opposite phenomena when compared to that of the longer chains. However, the segments of the shorter and the longer chains did not display any significant changes in bond order.

  • PDF

Synthesis and Characterization of Doped Silicon Nanoparticles by a Solution Route (용액 공정을 통한 도핑된 실리콘 나노입자의 합성과 특성)

  • Kwon, Ha-Young;Lim, Eun-Hee;Lee, Sung-Koo;Lee, Kyeong-K.
    • Applied Chemistry for Engineering
    • /
    • v.21 no.6
    • /
    • pp.694-696
    • /
    • 2010
  • We have synthesized boron (or phosphorous) doped silicon nanoparticles (Si-NPs) by a solution process. The surfaces of the Si-NPs were terminated with various alkyl groups to form a protecting layer. The Si-NPs were characterized by UV-Vis, PL, FTIR, and NMR. Through a microwave sintering process, the crystalline thin films of the Si-NPs were prepared by removing the surface alkyl groups. The TEM and SEM images reveal that contiguous films as large as $200{\mu}m$ in diameter were formed with a cubic structure. The electrical conductivity of the Si film was controlled by a doping type.

Effects of Surface Roughness on Contact Angle of Nanofluid Droplet (표면조도가 나노유체 액적의 접촉각에 미치는 영향)

  • Kim, Yeung Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.6
    • /
    • pp.559-566
    • /
    • 2013
  • The effects of solid surface roughness on the contact angle of a nanofluid droplet were experimentally investigated. The experiments were conducted using the solid surface of a 10 mm cubic copper block and the nanofluid of water mixed with CuO nanoparticles. The experimental results showed that the contact angles of nanofluid droplets were lower than those of water droplets and that the contact angle of the nanofluid droplet increased with the solid surface roughness. Furthermore, it was found that the contact angles of water droplets on the solid surface quenched by both water and the nanofluid were lower than those of water droplets on the pure solid surface. However, significant differences were not observed between the contact angles on the solid surfaces quenched by water and the nanofluid.

Characterization of the Microstructure and the Wear Resistance of the Flame-Quenched Cu-8.8Al-4.5Ni-4.5Fe Alloy (화염급냉 표면처리된 Cu-8.8Al-4.5Ni-4.5Fe 합금의 미세구조 분석 및 내마모성에 관한 연구)

  • Lee, M.K.;Hong, S.M.;Kim, G.H.;Kim, K.H.;Kim, W.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.6
    • /
    • pp.346-355
    • /
    • 2004
  • The flame quenching process has been employed to modify the surfaces of commercial marine propeller material, aluminum bronze alloy (Cu-8.8Al-5Ni-5Fe), and the microstructure, hardness and wear properties of the flame-quenched layers have been studied. The thermal history was accurately monitored during the process with respect to both the designed maximum surface temperature and holding time. The XRD and EDX analyses have shown that at temperatures above $T_{\beta}$, the microstructure consisting of ${\alpha}+{\kappa}$ phases changed into the ${\alpha}+{\beta}^{\prime}$ martensite due to an eutectoid reaction of ${\alpha}+{\kappa}{\rightarrow}{\beta}$ and a martensitic transformation of ${\beta}{\rightarrow}{\beta}^{\prime}$. The ${\beta}^{\prime}$ martensite phase formed showed a face-centered cubic (FCC) crystal structure with the typical twinned structure. The hardness of the flame-quenched layer having the ${\alpha}+{\beta}^{\prime}$ structure was similar to that of the ${\alpha}+{\kappa}$ structure and depended sensitively on the size and distribution of hard ${\kappa}$ and ${\beta}^{\prime}$ phases with depth from the surface. As a result of the sliding wear test, the wear resistance of the flame-quenched layer was markedly enhanced with the formation of the ${\beta}^{\prime}$ martensite.

Effect of surface treatments on the bond strength of indirect resin composite to resin matrix ceramics

  • Celik, Ersan;Sahin, Sezgi Cinel;Dede, Dogu Omur
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.4
    • /
    • pp.223-231
    • /
    • 2019
  • PURPOSE. The purpose of this study was to evaluate the shear bond strength (SBS) of an indirect resin composite (IRC) to the various resin matrix ceramic (RMC) blocks using different surface treatments. MATERIALS AND METHODS. Ninety-nine cubic RMC specimens consisting of a resin nanoceramic (RNC), a polymer-infiltrated hybrid ceramic (PIHC), and a flexible hybrid ceramic (FHC) were divided randomly into three surface treatment subgroups (n = 11). In the experimental groups, untreated (Cnt), tribochemical silica coating (Tbc), and Neodymium-Doped Yttrium Aluminum Garnet (Nd:YAG) laser irradiation (Lsr) with 3 W (150 mJ/pulse, 20 Hz for 20 sec.) were used as surface treatments. An indirect composite resin (IRC) was layered with a disc-shape mold ($2{\times}3mm$) onto the treated-ceramic surfaces and the specimens submitted to thermal cycling (6000 cycles, $5-55^{\circ}C$). The SBS test of specimens was performed using a universal testing machine and the specimens were examined with a scanning electron microscope to determine the failure mode. Data were statistically analyzed with two-way analysis of variance (ANOVA) and Tukey HSD test (${\alpha}=.05$). RESULTS. According to the two-way ANOVA, only the surface treatment parameter was statistically significant (P<.05) on the SBS of IRC to RMC. The SBS values of Lsr-applied RMC groups were significantly higher than Cnt groups for each RMC material, (P<.05). Significant differences were also determined between Tbc surface treatment applied and untreated (Cnt) PIHC materials (P=.039). CONCLUSION. For promoting a reliable bond strength during characterization of RMC with IRC, Nd:YAG laser or Tbc surface treatment technique should be used, putting in consideration the microstructure and composition of RMC materials and appropriate parameters for each material.

Evaluation of Surface Emission and Internal Movement of Water in Japanese Larch Lumber (낙엽송재 내 수분의 내부이동 및 표면방사 평가)

  • Han, Yeongjung;Eom, Changdeuk;Kim, Se Jong;Kang, Wook;Park, Joo Saeng;Park, Moon Jae;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1-8
    • /
    • 2007
  • Japanese larch specimens with dimension of 2.5 (radial direction) ${\times}$ 2.5 (tangential direction) ${\times}$ 2.5 cm (longitudinal direction) were prepared to determine 3 different directional internal moisture movement coefficients and surface emission coefficients along the radial-, the tangential-, and the tangential-direction. 4 sides of each cubic specimen were wrapped with paraffin tape and rubber tape, leaving open the 2 opposite surfaces of interest, to provide one dimensional moisture movement during drying. The coefficients were determined at three different temperatures, 70, 50 and $30^{\circ}C$ and at two different relative humidities, 30 and 60%. Internal moisture movement coefficients inclusive of flow of free water and diffusion of bound water and water vapor were increased in the high temperature condition. The internal moisture movement coefficient in the longitudinal direction was about six times of those in transverse directions with radial value being 20% greater than the tangential. Surface emission coefficients were increased with temperature and decreased with surface moisture content. Using this results, moisture content (MC) profile and quantities of moisture evaporating in Japanese larch lumber could be predicted in dynamic drying situations.